GLORIA

GEOMAR Library Ocean Research Information Access

Language
Preferred search index
Number of Hits per Page
Default Sort Criterion
Default Sort Ordering
Size of Search History
Default Email Address
Default Export Format
Default Export Encoding
Facet list arrangement
Maximum number of values per filter
Auto Completion
Topics (search only within journals and journal articles that belong to one or more of the selected topics)
Feed Format
Maximum Number of Items per Feed
feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Document type
Language
  • 1
    Online Resource
    Online Resource
    Berlin, Heidelberg :Springer Berlin / Heidelberg,
    Keywords: Oceanography-North Atlantic Ocean. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (500 pages)
    Edition: 1st ed.
    ISBN: 9783642568763
    DDC: 551.46/11
    Language: English
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    Berlin, Heidelberg :Springer Berlin / Heidelberg,
    Keywords: Continental margins-Congresses. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (486 pages)
    Edition: 1st ed.
    ISBN: 9783662051276
    DDC: 551.46
    Language: English
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    Cham :Springer International Publishing AG,
    Keywords: Oil spills. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (617 pages)
    Edition: 1st ed.
    ISBN: 9783030116057
    DDC: 628.16833
    Language: English
    Note: Intro -- Foreword and Dedication -- References -- Contents -- Part I: Introduction -- Chapter 1: Introduction to the Volume -- 1.1 Background -- 1.2 Introduction to the Volume -- References -- Part II: Physics and Chemistry of Deep Oil Well Blowouts -- Chapter 2: The Importance of Understanding Fundamental Physics and Chemistry of Deep Oil Blowouts -- 2.1 Introduction -- 2.2 The Oil -- 2.3 The Reservoir -- 2.4 Subsurface Release -- 2.5 Early Far-Field Fate -- References -- Chapter 3: Physical and Chemical Properties of Oil and Gas Under Reservoir and Deep-Sea Conditions -- 3.1 Molecular Composition and Physical Properties of Petroleum in Reservoirs -- 3.1.1 Source Dependence, Generation, Accumulation, and Alteration of Petroleum -- 3.1.2 Macondo Well Oil Molecular Characteristics -- 3.2 Physical Properties of Oil Under Deep Ocean Conditions -- 3.2.1 Bubble Point -- 3.2.2 Gas Saturation -- 3.2.3 Density and Swelling -- 3.2.4 Viscosity -- 3.2.5 Diffusivity -- 3.2.6 Interfacial Tension -- 3.3 Modeling Phase Equilibria (Gas-Oil-Water) in Oil Reservoirs and in the Deep Sea and Oil Constituent Partitioning -- 3.3.1 Bubble Point -- 3.3.2 Gas Saturation -- 3.3.3 Density and Swelling -- 3.3.4 Viscosity -- 3.3.5 Diffusivity -- 3.3.6 Interfacial Tension -- 3.4 Summary -- References -- Chapter 4: Jet Formation at the Spill Site and Resulting Droplet Size Distributions -- 4.1 Introduction -- 4.2 Determination of Drop Size Distributions in Laboratory and Field Settings -- 4.2.1 Pilot-Scale Jet Experiments -- 4.2.2 Stirrer Cells -- 4.2.3 DeepSpill: Field Experiment in the Deep Sea -- 4.2.4 Equipment for Field Measurements -- 4.2.5 Critical Review of Datasets -- 4.3 Modelling Approaches -- 4.3.1 Scaling-Based Models Using Dimensionless Numbers -- 4.3.2 Mechanistic Modelling. , 4.3.3 Novel Applications of Energy Dissipation Metrics to Understand Droplet Sizes from Experimental Data -- 4.4 Effects of Deep-Sea Blowout Characteristics -- 4.4.1 Influence of Dissolved Gases on the Droplet Size Distribution -- 4.4.2 Influence of Rapid Pressure Loss at the Wellhead and Phase Changes of the Oil -- 4.5 Capabilities and Limits of Subsea Dispersant Injection -- 4.6 Conclusions and Outlooks -- References -- Chapter 5: Behavior of Rising Droplets and Bubbles: Impact on the Physics of Deep-Sea Blowouts and Oil Fate -- 5.1 Introduction -- 5.2 Correlations for the Rise Velocity of Single Fluid Particles -- 5.3 Gas Bubble Behavior: Theoretical and Experimental Insights -- 5.4 Oil Droplet Behavior: Theoretical and Experimental Insights -- 5.5 How Reservoir and Deep-Sea Conditions Change Everything: Rise Behavior of Live Oil Droplets -- 5.6 Swarm Effects, Mass Transfer, and Gas Hydrates -- 5.7 Conclusion -- References -- Part III: Transport and Degradation of Oil and Gas from Deep Spills -- Chapter 6: The Importance of Understanding Transport and Degradation of Oil and Gasses from Deep-Sea Blowouts -- 6.1 Introduction -- 6.2 How Deep Subsea Spills Differ from Surface Releases -- 6.3 Properties of Oil Related to Fate and Transport -- 6.4 Fate of Oil and Gas: Understanding Where Oil Goes -- 6.5 Fate of Oil and Gas: Understanding the Degradation of Oil Components -- 6.6 Tracing the Fate of Oil in the Deep Sea: The Mass Balance -- References -- Chapter 7: Biodegradation of Petroleum Hydrocarbons in the Deep Sea -- 7.1 Introduction -- 7.2 Biodegradation in the Water Column -- 7.2.1 Rate of Liquid and Gaseous Hydrocarbon Biodegradation in the Water Column -- 7.2.2 Microbial Community Changes During the Spill, Pre-spill, and Post-spill -- 7.2.3 The Influence of Dispersants on Microbial Community and Biodegradation -- 7.3 Biodegradation in Sediments. , 7.3.1 Biodegradation of Petroleum in Marine Sediments (DWH and Other Case Studies) -- 7.3.2 Microbial Community Response in Deep Sea Sediments -- 7.4 Effect of High Pressure on Microbially Mediated Hydrocarbon Degradation -- 7.4.1 Ex Situ Incubations of Enriched Seawater and Sediments -- 7.4.2 Pure Culture Studies -- 7.5 Conclusions -- References -- Chapter 8: Partitioning of Organics Between Oil and Water Phases with and Without the Application of Dispersants -- 8.1 Introduction -- 8.2 Partition Device -- 8.3 Results -- 8.3.1 Partition Ratio Calculations -- 8.3.2 Partition Ratios Measured with the Application of Dispersant -- 8.4 Discussion -- 8.4.1 Effects of Pressure, Temperature, and Alkylation on Partitioning of Organics -- 8.4.2 Equilibrium Partition Ratio Along the Water Column -- 8.4.3 Use of Dispersants as a Spill Response Method -- 8.5 Conclusions -- References -- Chapter 9: Dynamic Coupling of Near-Field and Far-Field Models -- 9.1 Introduction -- 9.2 Models Description and Coupling -- 9.2.1 Near-Field Modeling -- 9.2.2 Far-Field Lagrangian Modeling -- 9.3 Coupled Near-Field and Far-Field Model -- 9.4 The Next Generation of Coupled Near-Field and Far-Field Models: Advancements -- References -- Chapter 10: Effects of Oil Properties and Slick Thickness on Dispersant Field Effectiveness and Oil Fate -- 10.1 Introduction -- 10.2 How Natural or Chemical Dispersion Affects Oil Slick Fate -- 10.3 Influence of Individual Key Parameters on Dispersion and Oil Slick Elongation -- 10.3.1 Main Oil Properties -- 10.3.2 Oil Layer Thickness -- 10.3.3 Initial Slick Size -- 10.3.4 Wind Speed -- 10.3.5 Dispersants -- 10.4 Decision-Making About Application of Chemical Dispersion -- 10.4.1 Effectiveness -- 10.4.2 Effects -- 10.4.2.1 Water Column -- 10.4.2.2 Benthic -- 10.5 Concluding Remarks -- References. , Chapter 11: Far-Field Modeling of a Deep-Sea Blowout: Sensitivity Studies of Initial Conditions, Biodegradation, Sedimentation, and Subsurface Dispersant Injection on Surface Slicks and Oil Plume Concentrations -- 11.1 Far-Field Modeling of Oil Spills -- 11.2 Laboratory Experiments and Observational Data for Numerical Modeling Support -- 11.2.1 Droplet Formation in Deep-Sea Conditions -- 11.2.2 Biodegradation of Hydrocarbons in the Water Column -- 11.2.3 Sediment Analysis -- 11.3 Numerical Simulation Description -- 11.3.1 Modeling and Experimental Setup -- 11.3.2 Suite of Numerical Case Studies -- 11.3.3 Model Output and Post-processing Variables -- 11.4 Modeling Results and Analyses -- 11.4.1 Surface Oil Expression -- 11.4.2 Oil Distribution in the Water Column and SSDI Effect -- 11.4.3 Modeled Oil Residue Sedimentation -- 11.5 Summary -- References -- Part IV: Oil Spill Records in Deep Sea Sediments -- Chapter 12: Marine Oil Snow Sedimentation and Flocculent Accumulation (MOSSFA) Events: Learning from the Past to Predict the Future -- 12.1 Defining of Marine Snow: An Operational Approach -- 12.2 Oil-Particle Interactions -- 12.3 Marine "Oil" Snow -- 12.4 MOS: Microhabitat and Entry Point to the Food Web -- 12.5 MOS: Sedimentation and Flocculent Accumulation -- 12.6 MOSSFA: Unique to the Deepwater Horizon Oil Spill? -- 12.7 MOS/MOSSFA: Modeling -- References -- Chapter 13: The Sedimentary Record of MOSSFA Events in the Gulf of Mexico: A Comparison of the Deepwater Horizon (2010) and Ixtoc 1 (1979) Oil Spills -- 13.1 Introduction -- 13.2 What Were the Characteristics of MOSSFA Sedimentary Inputs? -- 13.3 What Was the Extent of MOSSFA on the Seafloor? -- 13.4 What Postdepositional Processes Took Place as a Result of MOSSFA? -- 13.5 Can MOSSFA Be Preserved in the Sedimentary Record? -- 13.6 Conclusions -- References. , Chapter 14: Characterization of the Sedimentation Associated with the Deepwater Horizon Blowout: Depositional Pulse, Initial Response, and Stabilization -- 14.1 Introduction -- 14.2 Approach/Methods -- 14.2.1 Time-Series Approach/High-Resolution Sampling -- 14.2.2 Chronometers: Timing of Deposition -- 14.2.3 Sediment Texture and Composition -- 14.3 Sedimentary Response: Depositional Pulse (2010-2011) -- 14.4 Initial Sedimentary Response: Post-event (2011-2012) -- 14.5 Stabilization/Recovery: Post-event (2013-2016) -- 14.6 Preservation Potential in the Sedimentary Record -- 14.7 Critical Approaches/Methods -- 14.7.1 Rapid Response and Collection of Cores -- 14.7.2 Time Series -- 14.7.3 Sampling Resolution -- 14.7.4 MultiDisciplinary Approach -- 14.8 Conclusions -- References -- Chapter 15: Applications of FTICR-MS in Oil Spill Studies -- 15.1 Introduction -- 15.2 FTICR-MS Basics -- 15.3 Characterization of Source Oils and Weathered Oil Residues Using FTICR-MS -- 15.4 FTICR-MS Characterization of Dissolved Organic Matter and Its Relevance for Oil Spill Assessments -- 15.5 FTICR-MS Characterization of Marine Sediments and Its Relevance for Oil Spill Assessments -- 15.5.1 FTICR-MS Characterization of Marine Oil Snow Associations Generated by Oil Spills -- 15.6 Conclusions and Future Directions -- References -- Chapter 16: Changes in Redox Conditions of Surface Sediments Following the Deepwater Horizon and Ixtoc 1 Events -- 16.1 Introduction -- 16.2 Analytical Approach -- 16.3 Results and Discussion -- 16.3.1 Pre-impact Geochemistry -- 16.3.2 Post-impact: Organic Geochemistry -- 16.3.3 Post-impact: Mn Geochemistry -- 16.3.3.1 Post-impact: Explanation of Double Mn Peak -- 16.3.4 Post-impact: Re Geochemistry -- 16.3.4.1 Post-impact: Evolution of Re Enrichment -- 16.3.5 Post-impact: Ecological Consequences - Benthic Foraminifera. , 16.3.5.1 Post-impact: Ecological Consequences - Benthic Foraminifera (C-13 Depletion).
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    Cham :Springer International Publishing AG,
    Keywords: Multiphase flow. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (642 pages)
    Edition: 1st ed.
    ISBN: 9783030723613
    Series Statement: Fluid Mechanics and Its Applications Series ; v.128
    DDC: 532.05
    Language: English
    Note: Intro -- Contents -- Introduction -- Reactive Bubbly Flows-An  Interdisciplinary Approach -- Control of the Formation and Reaction of Copper-Oxygen Adduct Complexes in Multiphase Streams -- 1 Introduction -- 1.1 Basics of Cu/O2 Chemistry -- 1.2 Classical Systems -- 2 Novel Bisguanidine Copper Systems for O2 Activation and Transfer -- 2.1 Bisguanidine Toluene Systems for O2 Activation -- 2.2 Synthesis of Bisguanidine Toluene Systems for O2 Activation -- 2.3 Bisguanidine Toluene Systems for O2 Transfer -- 2.4 Fluorescence Studies with Bisguanidine Toluene Systems for O2 Transfer -- 3 Novel Hybrid Guanidine Copper Systems for O2 Activation and Transfer -- 3.1 Hybrid Guanidine Copper Systems for O2 Activation with Non-coordinating Anions -- 3.2 Hybrid Guanidine Copper Systems for O2 Activation with Coordinating Anions -- 3.3 Variations of the Amine Moiety in Hybrid Guanidine Ligands -- 4 Conclusion and Outlook -- References -- In Situ Characterizable High-Spin Nitrosyl-Iron Complexes with Controllable Reactivity in Multiphase Reaction Media -- 1 Introduction -- 2 [Fe(H2O)5(NO)]2+, the 'Brown-Ring' Chromophore -- 3 Syntheses, Structure and Bonding of {FeNO}7- and {Fe(NO)2}9-type Halogenido Nitrosyl Ferrates -- 4 Structure and Bonding of Nitrosyl-iron(II) Compounds with Aminecarboxylato Co-Ligands in Aqueous Solution -- 4.1 First Part: Less Stable Compounds -- 4.2 Second Part: Stable Compounds -- 4.3 Stability of the Fe-NO Linkage in Aqueous Solution -- 5 The 'Non-Innocent' Nitrosyl Ligand and the Challenge of IUPAC's Oxidation-State Assignment -- References -- Formation, Reactivity Tuning and Kinetic Investigations of Iron "Dioxygen" Intermediate Complexes and Derivatives in Multiphase Flow Reactions -- 1 Introduction -- 2 O2 Activation -- 3 The Iron HPTB System -- 3.1 General Aspects -- 3.2 Previous Investigations on the Iron HPTB System. , 3.3 Investigations on the Iron HPTB System -- 4 Conclusion and Outlook -- References -- Analysis of Turbulent Mixing Und Mass Transport Processes in Bubble Swarms Under the Influence of Bubble-Induced Turbulence -- 1 Introduction -- 2 Counterflow Water Channel -- 3 Characterization of the Counter-Flow Channel -- 4 Emulation of Bubble Induced Turbulence -- 4.1 Free Moving Particle Grids -- 4.2 Characterization of the Particle Grids and Turbulence Analysis -- 4.3 Conclusion -- 5 Behavior of a Single Bubble in Swarm like Background Turbulence -- 5.1 Experimental Setup -- 6 Movement in Emulated Turbulence -- 6.1 Deformation of the Surface -- 6.2 Influence of the Turbulence on the Bubbles Wake Structures -- 6.3 Conclusion -- 7 Conclusions and Outlook -- References -- Experimental Studies on the Hydrodynamics, Mass Transfer and Reaction in Bubble Swarms with Ultrafast X-ray Tomography and Local Probes -- 1 Introduction -- 2 Reaction Systems Used for Experimental Investigation of Bubbly Flows -- 2.1 Chemical Absorption of CO2 -- 2.2 Reaction of FeII(ligand)/NO -- 3 Experimental Setup and Methods -- 3.1 Bubble Column Setup for CO2 Absorption Measurements -- 3.2 Ultrafast X-ray CT for Investigation of Bubble Column Hydrodynamics -- 3.3 Wire-Mesh Sensor for Mass Transfer Measurements -- 3.4 Experimental Setup for Experiments with the FeII(edta)/NO System -- 4 Experimental Results -- 4.1  Gas Dynamics and Bubble Properties of Uniform Bubbly Flow -- 5 Conclusion and Outlook -- References -- Experimental Investigation of Local Hydrodynamics and Chemical Reactions in Taylor Flows Using Magnetic Resonance Imaging -- 1 Introduction -- 2 Experimental Flow Setup for the Investigation of Taylor Flows Inside a Horizontal Bore MRI Scanner -- 2.1 Initial Version of the Flow Setup -- 2.2 Improved Version of the Flow Setup -- 2.3 Hydrodynamic Investigation by PIV. , 3 Development of an MRI Setup for Taylor Flow Investigations Inside a Horizontal Bore MRI Scanner -- 4 Development of an MRI Method for Taylor Flow Investigations -- 4.1 Influence of Different MRI Parameters on the Acquired Data -- 4.2 Influence of Gas-Liquid Mass Transfer on the Acquired Data -- 4.3 MRI Sequence for Taylor Flow Investigation -- 4.4 MRI Data Acquisition and Processing -- 5 MRI of Hydrodynamics Inside Taylor Flows -- 6 MRI of Chemical Reactions Inside Taylor Flows -- 7 Conclusion and Outlook -- References -- Investigation of the Influence of Transport Processes on Chemical Reactions in Bubbly Flows Using Space-Resolved In Situ Analytics and Simultaneous Characterization of Bubble Dynamics in Real-Time -- 1 Introduction and Aims -- 2 Experimental Setups -- 2.1 Taylor Flow Setup -- 2.2 Real-Time Raman Process Analysis System -- 2.3 Continuous-Flow Setup with UV/VIS Spectroscopy -- 2.4 Real-Time Tomographic Process Analysis System -- 3 Experimental Results -- 3.1 Evaluation of Chemical Reaction Systems Based on Spectroscopy -- 3.2 Evaluation of the Confocal Laser Raman Spectroscopy Setup -- 3.3 Measurements of Reaction Kinetics with a SuperFocus Mixer -- 3.4 Concentration Measurements with the Real-Time Raman Process Analysis System Applied to a Taylor Flow of Gaseous CO2 in Aqueous Sodium Hydroxide Solutions -- 3.5 Measurement of a Wake Below a Gas Bubble Using Laser Beams -- 3.6 Characterization of the Real-Time Tomographic Process Analysis System -- 4 Summary and Conclusion -- References -- Determination of Intrinsic Gas-Liquid Reaction Kinetics in Homogeneous Liquid Phase and the Impact of the Bubble Wake on Effective Reaction Rates -- 1 Introduction/Motivation -- 2 Determination of Gas-Liquid Reaction Kinetics in Homogeneous Liquid Phase -- 2.1 Experimental Setup -- 2.2 Experimental Results. , 2.3 Kinetic Model of the Toluene Oxidation -- 2.4 Validation of the Kinetic Model -- 3 Numerical Study of the Toluene Oxidation in a Reactive Bubbly Flow -- 3.1 Numerical Model -- 3.2 Results -- 4 Study of the Toluene Oxidation in a Technical Bubble Column -- 4.1 Experimental Setup -- 4.2 Experimental Conditions -- 4.3 Results -- 5 Numerical Study of the Mixing Dependencies in a Reactive Bubbly Flow -- 5.1 Preliminary Considerations -- 5.2 Is the Overall Reaction Influenced by Mixing? -- 5.3 When Does Micro Mixing Affect the Overall Reaction Rate? -- 5.4 What Causes Mixture Masking? -- 6 Conclusions -- References -- Mass Transfer Around Gas Bubbles in Reacting Liquids -- 1 Introduction -- 1.1 Fluid Dynamics of Single Bubbles -- 1.2 Mass Transfer of Single Bubbles -- 2 Experimental Setup and Methods -- 2.1 Measurement of Velocities -- 2.2 Evaluation of Mass Transfer Coefficients -- 2.3 Material Properties and Fluid Dynamics of FeII(Ligand) Systems -- 3 Physical Mass Transfer -- 4 Chemical Reaction -- 4.1 Enhancement Factors Due to Chemical Reaction of CO2 in NaOHaq -- 4.2 System NO in FeII(Ligand) -- 5 Conclusion -- References -- Experimental Investigation of Reactive Bubbly Flows-Influence of Boundary Layer Dynamics on Mass Transfer and Chemical Reactions -- 1 Introduction -- 1.1 Mass Transfer in Reactive Bubbly Flows -- 2 Determination of Mass Transfer Relevant Kinetics in a SuperFocus Mixer -- 2.1 Sodium Sulfite Oxidation as a Model Reaction -- 2.2 Concentration Measurements Using Laser Induced Fluorescence (LIF) -- 2.3 Experimental Setup and Methods -- 2.4 Experimental Results -- 3 Investigation of Chemical Reactions by Means of Taylor Bubbles -- 3.1 Experimental Setup and Methods -- 3.2 Experimental Results -- 3.3 Analyzing Wake Structures at Taylor Bubbles Using Lagrangian Coherent Structures. , 3.4 Mass Balance for Wake Structures in Taylor Flows -- 4 Local Mass Transfer Measurements at Ascending Bubbles -- 4.1 Experimental Setup and Methods -- 4.2 Experimental Results -- 5 Conclusion and Outlook -- References -- Experimental Characterization of Gas-Liquid Mass Transfer in a Reaction Bubble Column Using a Neutralization Reaction -- 1 Experimental Setup of the Bubble Column -- 2 Applied Measurement Techniques -- 2.1 Bubble Characterization with Shadowgraphy and Particle-Tracking-Velocimetry -- 2.2 Mass Transfer Measurements through 2-Tracer-Laser-Induced-Fluorescence -- 2.3 Measurement of the Liquid Flow Field by Means of Particle Image Velocimetry -- 3 Reaction System -- 4 Results -- 4.1 Bubble Parameters -- 4.2 Mass Transfer from CO2-Bubbles -- 4.3 Mass Transfer Coefficients -- 4.4 Liquid Velocity -- 5 Conclusions -- References -- Modeling and Simulation of Convection-Dominated Species Transport in the Vicinity of Rising Bubbles -- 1 Introduction -- 2 Numerical Methods -- 2.1 Geometrical Volume-of-Fluid Approach -- 2.2 Single-Phase Approximation -- 3 Modeling of Convection-Dominated Concentration Boundary Layers -- 3.1 Overview -- 3.2 Effect of Insufficient Mesh Resolution -- 3.3 Analytical and Data-Driven Profile Reconstruction -- 3.4 Implementation in Simulation Approaches -- 3.5 Validation -- 4 Reactive Species Transport Around Single Rising Bubbles -- 4.1 Overview -- 4.2 Velocity and Concentration Fields -- 4.3 Species Transfer and Enhancement -- 4.4 Local Selectivity -- 5 Conclusion and Outlook -- References -- Development and Application of Direct Numerical Simulations for Reactive Transport Processes at Single Bubbles -- 1 Introduction -- 2 Model and Method -- 2.1 Mathematical Model -- 2.2 Numerical Methods -- 3 Numerical Validation -- 3.1 Computational Case Setup -- 3.2 Validation Study. , 4 Reactive Species Transfer from Single Rising Bubbles.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Online Resource
    Online Resource
    Cham :Springer International Publishing AG,
    Keywords: Oil spills-Environmental aspects. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (549 pages)
    Edition: 1st ed.
    ISBN: 9783030129637
    Language: English
    Note: Intro -- Foreword and Dedication -- References -- Contents -- Part I: Overview -- Chapter 1: Introduction to the Volume -- 1.1 Introduction -- 1.2 Focus of the Book -- 1.3 Final Thoughts -- References -- Chapter 2: Deepwater Oil and Gas Production in the Gulf of Mexico and Related Global Trends -- 2.1 Introduction -- 2.2 History of Oil Development and Production in the Gulf of Mexico -- 2.3 The Future of Oil and Gas Development in the Gulf of Mexico -- 2.4 Global Deepwater Resource Development -- 2.5 Summary -- References -- Chapter 3: Spilled Oil Composition and the Natural Carbon Cycle: The True Drivers of Environmental Fate and Effects of Oil Spills -- 3.1 Introduction -- 3.2 Carbon Cycle -- 3.3 Biologically Stored Energy -- 3.4 Environmental Redox Reactions -- 3.5 Understanding the Differences Between Persistent and Reactive Pollutants -- 3.6 Origin of Crude Oil -- 3.7 Composition of Crude Oils -- 3.7.1 Aliphatic Hydrocarbons -- 3.7.2 Aromatic Hydrocarbons -- 3.7.3 Non-hydrocarbons -- 3.7.4 Live Oil Versus Dead Oil -- 3.8 Oil Weathering -- 3.8.1 Floating or Subsurface Oil -- 3.8.2 Oil Impacts in Coastal Marshes -- 3.8.3 Subsurface Oil at Released Depth -- 3.8.4 Subsurface Oil's Slow Transit to the Surface -- 3.9 What About the Next Big Spill? -- 3.9.1 Critical Review of DWH Incident -- 3.9.2 Importance of Multidisciplinary Studies and Their Implications -- 3.9.3 Multidisciplinary Scientific Publications -- 3.9.4 Explaining What Happened to Broad Audiences -- 3.10 Conclusions -- References -- Part II: Geological, Chemical, Ecological and Physical Oceanographic Settings and Baselines for Deep Oil Spills in the Gulf of Mexico -- Chapter 12: Combining Isoscapes with Tissue-Specific Isotope Records to Recreate the Geographic Histories of Fish -- 12.1 Introduction -- 12.2 Marine Isoscapes -- 12.3 Overview of Variation in δ13C and δ15N Isoscapes. , 12.4 Effects of Scale on Isoscapes -- 12.5 Tissue-Specific Isotope Analysis -- 12.6 Site Fidelity Based on Two or More Tissues (Tissue Comparison Method) -- 12.7 Lifetime Isotope Records from Eye Lenses -- 12.8 Practical Solutions for Eye-Lens Analysis -- 12.9 Interpretation of Lifetime Isotopic Histories from Eye Lenses -- References -- Chapter 13: The Utility of Stable and Radioisotopes in Fish Tissues as Biogeochemical Tracers of Marine Oil Spill Food Web Effects -- 13.1 Introduction -- 13.2 Stable Isotopes Utilized to Infer Food Web Effects -- 13.2.1 Temporal Variability in Reef Fish Muscle Stable Isotopes -- 13.3 Petrocarbon Assimilation in the Gulf of Mexico Food Web -- 13.3.1 Radiocarbon Analysis of Reef Fish Muscle Tissue -- 13.3.2 Potential Long-Term Biomarkers -- 13.4 Summary and Implications for Future Marine Oil Spills -- References -- Chapter 14: Modernizing Protocols for Aquatic Toxicity Testing of Oil and Dispersant -- 14.1 Introduction -- 14.2 Understanding the Objectives for Aquatic Toxicity Testing of Oil and Dispersants -- 14.3 The Genesis of CROSERF Protocols -- 14.4 Evolution and Modification of CROSERF Methods -- 14.5 Lessons Learned from the DWH Spill and Recommendations for Future Oil Spill Toxicology Research -- 14.5.1 Recommendations for Modernizing of CROSERF Protocols -- References -- Chapter 15: Polycyclic Aromatic Hydrocarbon Baselines in Gulf of Mexico Fishes -- 15.1 Introduction -- 15.2 Pre-DWH Polycyclic Aromatic Hydrocarbon Baselines in Fish -- 15.3 Post-DWH and Ixtoc 1 Baselines in Fish -- 15.3.1 Seafood Safety -- 15.3.2 Hepatobiliary and Extrahepatic PAH Levels in Fish -- 15.4 Conclusions -- References -- Chapter 16: Case Study: Using a Combined Laboratory, Field, and Modeling Approach to Assess Oil Spill Impacts -- 16.1 Introduction -- 16.2 Case Study Overview -- 16.2.1 Target Species -- 16.2.2 Conceptual Model. , 16.2.3 Sensitivity Analysis -- 16.2.4 Developing a Targeted Research Strategy -- 16.3 Targeted Research -- 16.3.1 Field Research -- 16.3.1.1 Habitat suitability -- 16.3.1.2 Contaminant Distribution and Composition -- 16.3.2 Laboratory Research -- 16.3.2.1 Toxicity Effects -- 16.3.2.2 Demographic Endpoints -- 16.3.2.3 Density Dependence -- 16.3.3 Modeling -- 16.3.3.1 Interaction of Density Dependence and Contaminant Effects -- 16.3.3.2 Temperature-Dependent Demographic Rates -- 16.4 Assessing Risk Using Models of Varying Complexity -- 16.4.1 Models to Evaluate Risk -- 16.4.2 Model Outcomes -- 16.5 Summary and Recommendations for Future Studies -- References -- Chapter 4: An Overview of the Geologic Origins of Hydrocarbons and Production Trends in the Gulf of Mexico -- 4.1 Introduction -- 4.2 Evolution of Gulf of Mexico -- 4.3 Basic Ingredients Required to Generate Oil/Gas Accumulations -- 4.4 Exploration and Production Trends -- 4.5 Where Is the Industry Headed Next and Why? -- 4.6 Online Resources for Up-to-Date Information -- 4.7 Conclusions -- References -- Chapter 5: Gulf of Mexico (GoM) Bottom Sediments and Depositional Processes: A Baseline for Future Oil Spills -- 5.1 Introduction -- 5.2 Gulf of Mexico Basin -- 5.2.1 Eastern GoM Basin-Mississippi Fan -- 5.2.2 Western GoM Basin -- 5.2.3 Implications for Oiled Sediment Deposition/Accumulation -- 5.3 Carbonate-Dominated Margins: West Florida and Campeche Bank -- 5.3.1 West Florida -- 5.3.2 Campeche Bank -- 5.3.3 Implications for Oiled Sediment Deposition/Accumulation -- 5.4 Siliciclastic Margins: Northwest Florida to Mexico -- 5.4.1 Northern GoM Continental Margin: Northwest Florida to Central Texas -- 5.4.2 Western GoM Margin: Texas to Mexico -- 5.4.3 Southwestern GoM Margin: Mexico -- 5.4.4 Implications for Oiled Sediment Deposition/Accumulation -- 5.5 Cuba. , 5.5.1 Implications for Oiled Sediment Deposition/Accumulation -- 5.6 Conclusions -- References -- Chapter 6: Benthic Faunal Baselines in the Gulf of Mexico: A Precursor to Evaluate Future Impacts -- 6.1 Background -- 6.2 Developing a New Normal -- 6.2.1 Benthic Foraminifera -- 6.2.2 Meiofauna -- 6.2.3 Macrofauna -- 6.3 Conclusions -- References -- Chapter 7: Linking Abiotic Variables with Macrofaunal and Meiofaunal Abundance and Community Structure Patterns on the Gulf of Mexico Continental Slope -- 7.1 Introduction -- 7.2 Methods -- 7.2.1 Abiotic Variables -- 7.2.2 Biotic Variables -- 7.2.3 Diversity and Evenness -- 7.2.4 Principal Component Analysis -- 7.2.5 Nonmetric Multidimensional Scaling -- 7.3 Results -- 7.3.1 Environmental Analyses -- 7.3.2 Benthic Abundance and Community Analyses -- 7.3.3 Linking Environment and Benthos -- 7.3.4 Temporal Change -- 7.3.5 Diversity Spatial Change -- 7.4 Discussion -- 7.4.1 Environmental Analyses -- 7.4.2 Benthic Abundance and Community Analyses -- 7.4.3 Linking Environment and Benthos -- 7.5 Conclusion -- References -- Chapter 8: The Asphalt Ecosystem of the Southern Gulf of Mexico: Abyssal Habitats Across Space and Time -- 8.1 Introduction -- 8.2 Seep Habitats in the Northern Gulf of Mexico -- 8.3 A Novel Seep Process in the Southern Gulf of Mexico -- 8.4 The Asphalt Flow at Chapopote -- 8.5 Fresh Oil and Asphalt at Mictlan -- 8.6 Gas Seeps and Hydrate at Tsanyao Yang Knoll -- 8.7 Epifauna from the Campeche Knolls Chemosynthetic Communities -- 8.8 Research Questions and Resource Protection -- References -- Chapter 9: Geochemical and Faunal Characterization in the Sediments off the Cuban North and Northwest Coast -- 9.1 Introduction -- 9.2 Geographical Setting and Sampling -- 9.3 Sediment Characterization -- 9.4 Fauna Communities -- 9.4.1 Mollusks -- 9.4.2 Meiofauna -- 9.4.3 Foraminifera -- 9.5 Conclusions. , References -- Chapter 10: Mapping Isotopic and Dissolved Organic Matter Baselines in Waters and Sediments of the Gulf of Mexico -- 10.1 Introduction -- 10.2 Analytical Approaches -- 10.2.1 High-Resolution Mass Spectrometry: FTICR-MS -- 10.2.1.1 Stable Isotope Analysis -- 10.2.1.2 Radiocarbon Analysis -- 10.3 FTICR-MS -- 10.3.1 Geochemical Characterization of the FTICR-MS Composition of the Baseline Water Column Profile (at Multiple Depths) from Northern Gulf of Mexico -- 10.3.2 Geochemical Characterization of the FTICR-MS Composition of the Baseline Sediment WEOM from Northern Gulf of Mexico -- 10.3.3 Continuum Between Water Column and Sediments -- 10.4 Stable and Radiocarbon Isotopic Composition of Gulf of Mexico Organic Matter Pools -- 10.4.1 Dissolved Organic Carbon -- 10.4.2 Sinking Particulate Organic Carbon -- 10.4.3 Sedimentary Organic Carbon -- 10.4.4 Ramped Pyrolysis-Oxidation of Sedimentary Organic Matter -- 10.5 Conclusions and Baselines -- References -- Chapter 11: Toward a Predictive Understanding of the Benthic Microbial Community Response to Oiling on the Northern Gulf of Mexico Coast -- 11.1 Introduction -- 11.2 Fate of Petroleum Hydrocarbons at Pensacola Municipal Beach -- 11.3 Diagnosis of the Oil-Induced Bacterial Bloom Using Next-Generation Sequencing Methods -- 11.4 Using Metagenomics to Determine the Functional Response to Oil Contamination -- 11.5 Linking Advances in Metagenomics to Cultivation -- 11.6 Conclusions and Guidance for Future Emergency Response Efforts -- References -- Part III: Simulations of Future Deep Spills -- Chapter 17: Testing the Effect of MOSSFA (Marine Oil Snow Sedimentation and Flocculent Accumulation) Events in Benthic Microcosms -- 17.1 Introduction -- 17.2 Experimental Setup -- 17.2.1 Test Systems -- 17.2.2 Treatments -- 17.2.3 Analyses -- 17.3 Experimental Results -- 17.3.1 Oxygen Levels. , 17.3.2 Macroinvertebrates.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Keywords: Aquatic biology ; Marine & Freshwater Sciences ; Marine Sciences ; Environmental chemistry ; Environmental management ; Biotechnology ; Aquatic ecology . ; Freshwater. ; Water quality. ; Environmental engineering. ; Water pollution. ; Ölunfall
    Description / Table of Contents: Section I Overview -- 1 Introduction to the volume -- 2 Deep-water oil and gas production in the Gulf of Mexico, and related global trends -- 3 Spilled oil composition and the natural carbon cycle: The true drivers of environmental fate and effects of oil spills -- Section II Geological, Chemical, Ecological and Physical Oceanographic Settings and Baselines for Deep Oil Spills in the Gulf of Mexico -- 4 An overview of the geologic origins of hydrocarbons and production trends in the Gulf of Mexico -- 5 Gulf of Mexico (GoM) bottom sediments and depositional processes: A baseline for future oil spills -- 6 Benthic faunal baselines in the Gulf of Mexico: A precursor to evaluate future impacts -- 7 Linking abiotic variables with macrofaunal and meiofaunal abundance and community -- 8 The asphalt ecosystem of the southern Gulf of Mexico: abyssal habitats across space and time -- 9 Geochemical and faunal characterization in the sediments off the Cuban north and northwest coast -- 10 Mapping isotopic and dissolved organic matter baselines in waters and sediments of Gulf of Mexico -- 11 Toward a predictive understanding of the benthic microbial community response to oiling on the northern Gulf of Mexico coast -- 12 Combining isoscapes with tissue-specific isotope records to re-create the geographic histories of fish -- 13 The utility of stable and radio isotopes in fish tissues as biogeochemical tracers of marine oil spill food web effects -- 14 Modernizing protocols for aquatic toxicity testing of oil and dispersant -- 15 Polycyclic aromatic hydrocarbon baselines in Gulf of Mexico fishes -- 16 Case Study: Using a combined laboratory, field, and modeling approach to assess oil spill impacts -- Section III Simulations of Future Deep Spills -- 17 Testing the effect of MOSSFA (Marine Oil Snow Sedimentation and Flocculent Accumulation) events in benthic microcosms -- 18 Physical processes influencing the sedimentation and lateral transport of MOSSFA in the NE Gulf of Mexico -- 19 Simulating deep oil spills beyond the Gulf of Mexico -- Section IV Comparisons of likely impacts from simulated spills -- 20 Comparison of the spatial extent, impacts to shorelines, and ecosystem and 4-dimensional characteristics of simulated oil spills -- 21 A predictive strategy for mapping locations where future MOSSFA events are expected -- 22 Connectivity of Gulf of Mexico continental shelf fish populations and implications of simulated oil spills -- 23 Evaluating the effectiveness of fishery closures for deep oil spills using a 4-dimensional model -- 24 As Gulf oil extraction goes deeper, who is at risk? Community structure, distribution, and connectivity of the deep-pelagic fauna -- 25 Evaluating impacts of deep oil spills on oceanic marine mammals -- 26 Comparative environmental sensitivity of offshore Gulf of Mexico waters potentially impacted by ultra-deep oil well blowouts -- Section V Preparing for and Responding to the Next Deepwater Spill -- 27 Preparing for the inevitable: ecological and indigenous community impacts of oil spill-related mortality in the United States Arctic marine ecosystem -- 28 Summary of contemporary research on use of chemical dispersants for deep sea oil spills -- 29 Perspectives on research, technology, policy and human resources for improved management of ultra-deep oil and gas resources and responses to oil spills -- Index
    Type of Medium: Online Resource
    Pages: 1 Online-Ressource (XII, 542 p. 167 illus., 138 illus. in color)
    Edition: 1st ed. 2020
    ISBN: 9783030129637
    Series Statement: Springer eBooks
    Language: English
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Keywords: Hochschulschrift
    Type of Medium: Book
    Pages: 193 Bl , Ill., graph. Darst., Kt
    Language: German
    Note: Kiel, Univ., Habil.-Schr., 1997
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Keywords: Aquatic biology ; Marine & Freshwater Sciences ; Marine Sciences ; Environmental chemistry ; Environmental management ; Biotechnology ; Aquatic ecology . ; Freshwater. ; Water quality. ; Environmental engineering. ; Water pollution. ; Aufsatzsammlung ; Ölunfall ; Gewässersanierung ; Bodensanierung ; Ölpest ; Tiefsee ; Deepwater Horizon
    Description / Table of Contents: Inhaltsverzeichnis: Section I. Introduction -- 1. Introduction to the Volume -- Section II. Physics and Chemistry of Deep Oil Well Blowouts -- 2. The importance of understanding fundamental physics and chemistry of deep oil blowouts -- 3. Physical and chemical properties of oil and gas under reservoir and deep-sea conditions -- 4. Jet formation at the blowout site -- 5. Behavior of rising droplets and bubbles – impact on the physics of deep-sea blowouts and oil fate -- Section III. Transport and Degradation of Oil and Gas from Deep Spills -- 6. The importance of understanding transport and degradation of oil and gasses from deep sea blowouts -- 7. Biodegradation of petroleum hydrocarbons in the deep sea -- 8 Partitioning of organics between oil and water phases with and without the application of dispersants -- 9. Dynamic coupling of near-field and far-field models -- 10. Effects of oil properties and slick thickness on dispersant field effectiveness and oil fate -- 11. Far-field modeling of a deep-sea blowout: sensitivity studies of initial conditions, biodegradation, sedimentation and sub-surface dispersant injection on surface slicks and oil plume concentrations -- Section IV. Oil Spill Records in Deep Sea Sediments -- 12. Formation and sinking of MOSSFA (Marine Oil Snow Sedimentation and Flocculent Accumulation) events: Past and Present -- 13. The sedimentary record of MOSSFA events in the Gulf of Mexico: A comparison of the Deepwater Horizon (2010) and Ixtoc 1 (1979) oil spills -- 14. Characterization of the sedimentation associated with the Deepwater Horizon blowout: depositional pulse, initial response, and stabilization -- 15. Applications of FTICR-MS in oil spill studies -- 16. Changes in redox conditions of surface sediments following the Deepwater Horizon and Ixtoc 1 events -- 17. Long-term preservation of oil spill events in sediments: the case for the Deepwater Horizon spill in the northern Gulf of Mexico -- 18. Effect of marine snow on microbial oil degradation -- 19. Molecular legacy of the 1979 Ixtoc 1 oil spill in deep-sea sediments of the southern Gulf of Mexico -- 20. 40 years of weathering of coastal oil residues in the southern Gulf of Mexico -- Section V. Impacts of Deep Spills on Plankton, Fishes, and Protected Resources -- 21. Overview of ecological impacts of deep spills -- 22. Deep-sea benthic faunal impacts and community evolution before, during and after the Deepwater Horizon event -- 23. Impact and resilience of benthic foraminifera in the aftermath of the Deepwater Horizon and Ixtoc 1 oil spills -- 24. Chronic sublethal effects observed in wild caught fish following two major oil spills in the Gulf of Mexico: Deepwater Horizon and Ixtoc 1 -- 25. Impacts of deep spills on fish and fisheries -- 26. Impacts of the Deepwater Horizon oil spill on marine mammals and sea turtles -- Section VI. Toxicology of Deep Oil Spills -- 27. Ecotoxicology of deep ocean spills -- 28 A synthesis of Deepwater Horizon oil, chemical dispersant and chemically dispersed oil aquatic standard laboratory acute and chronic toxicity studies -- 29. Digging deeper than LC/EC50: non-traditional endpoints and non-model species in oil spill toxicology -- 30. Genetics and oil: transcriptomics, epigenetics and population genomics as tools to understand animal responses to exposure across different time scales -- Section VI. I Ecosystem-level modeling of deep oil spill impacts -- 31. A synthesis of top down and bottom up impacts of the Deepwater Horizon oil spill using ecosystem modeling -- 32. Comparing ecosystem model outcomes between Ixtoc 1 and Deepwater Horizon oil spills -- 33. Effects of the Deepwater Horizon oil spill on Human Communities: Catch and Economic Impacts -- Section VIII. Summary -- 34. Summary of Major Themes – Deep Oil Spills -- Index
    Type of Medium: Online Resource
    Pages: 1 Online-Ressource (XIV, 611 p. 152 illus., 110 illus. in color)
    Edition: 1st ed. 2020
    ISBN: 9783030116057
    Series Statement: Springer eBooks
    Language: English
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    In: Geowissenschaften, Berlin : Ernst & Sohn, 1988, 15(1997), 9, Seite 292-295, 0933-0704
    In: volume:15
    In: year:1997
    In: number:9
    In: pages:292-295
    Type of Medium: Article
    Pages: Ill., graph. Darst.
    ISSN: 0933-0704
    Language: German
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Keywords: Hochschulschrift ; Weddellmeer ; Diagenese ; Opal ; Weddellmeer ; Diagenese ; Kohlenstoff ; Weddellmeer ; Sediment ; Analyse ; Weddellmeer ; Sediment ; Opal ; Frühdiagnostik ; Weddellmeer ; Sediment ; Kohlenstoff ; Frühdiagnostik
    Type of Medium: Book
    Pages: 156 S. , graph. Darst., Kt.
    Series Statement: Berichte zur Polarforschung 73
    RVK:
    Language: German
    Note: Zsfassung in dt. und. engl. Sprache , Zugl.: Bremen, Univ., Diss., 1990
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...