GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 11
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2011. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 41 (2011): 889–910, doi:10.1175/2010JPO4496.1.
    Description: This paper examines interaction between a barotropic point vortex and a steplike topography with a bay-shaped shelf. The interaction is governed by two mechanisms: propagation of topographic Rossby waves and advection by the forcing vortex. Topographic waves are supported by the potential vorticity (PV) jump across the topography and propagate along the step only in one direction, having higher PV on the right. Near one side boundary of the bay, which is in the wave propagation direction and has a narrow shelf, waves are blocked by the boundary, inducing strong out-of-bay transport in the form of detached crests. The wave–boundary interaction as well as out-of-bay transport is strengthened as the minimum shelf width is decreased. The two control mechanisms are related differently in anticyclone- and cyclone-induced interactions. In anticyclone-induced interactions, the PV front deformations are moved in opposite directions by the point vortex and topographic waves; a topographic cyclone forms out of the balance between the two opposing mechanisms and is advected by the forcing vortex into the deep ocean. In cyclone-induced interactions, the PV front deformations are moved in the same direction by the two mechanisms; a topographic cyclone forms out of the wave–boundary interaction but is confined to the coast. Therefore, anticyclonic vortices are more capable of driving water off the topography. The anticyclone-induced transport is enhanced for smaller vortex–step distance or smaller topography when the vortex advection is relatively strong compared to the wave propagation mechanism.
    Description: Y. Zhang acknowledges the support of theMIT-WHOI Joint Programin Physical Oceanography, NSF OCE-9901654 and OCE-0451086. J. Pedlosky acknowledges the support of NSF OCE- 9901654 and OCE-0451086.
    Keywords: Transport ; Eddies ; Barotropic flow ; Topographic effects ; Vortices ; Currents ; Potential vorticity ; Rossby waves
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 12
    facet.materialart.
    Unknown
    Sears Foundation for Marine Research
    Publication Date: 2022-05-25
    Description: Author Posting. © Sears Foundation for Marine Research, 2011. This article is posted here by permission of Sears Foundation for Marine Research for personal use, not for redistribution. The definitive version was published in Journal of Marine Research 69 (2011): 705-722, doi:10.1357/002224011799849363.
    Description: The downstream development in both space and time of baroclinic instability is studied in a nonlinear channel model on the f-plane. The model allows the development of the instability to be expressed on space and time scales that are long compared to the growth rates and wavelengths of the most unstable wave. The unstable system is forced by time-varying boundary conditions at the origin of the channel and so serves as a conceptual model for the development of fluctuations in currents like the Gulf Stream and Kuroshio downstream of their separation points from their respective western boundaries. The theory is developed for both substantially dissipative systems as well as weakly dissipative systems for which the viscous decay time is of the order of the advective time in the former case and the growth time in the latter case. In the first case a first order equation in time leads to a hyperbolic system for which exact solutions are found in the case of monochromatic forcing. For a finite bandwidth the governing equations are nonlinear and parabolic and could be put in the form of the Real Ginzburg Landau equation first developed by Newell and Whitehead (1969) and Segel (1969) although we show the equation is not pertinent to the downstream development problem. When the dissipation is small a third order system of partial differential equations is obtained. For steady states the system supports chaotic behavior along the characteristics. This produces for the-time dependent problem new features, principally a strong focusing of amplitude in the regions behind the advancing front and the appearance of what might be called “chaotic shocks.“
    Description: This research was supported in part by NSF Grant OCE 0925061.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2017. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 47 (2017): 2251-2265, doi:10.1175/JPO-D-17-0042.1.
    Description: The problem of localized dense water formation over a sloping bottom is considered for the general case in which the topography forms a closed contour. This class of problems is motivated by topography around islands or shallow shoals in which convection resulting from brine rejection or surface heat loss reaches the bottom. The focus of this study is on the large-scale circulation that is forced far from the region of surface forcing. The authors find that a cyclonic current is generated around the topography, in the opposite sense to the propagation of the dense water plume. In physical terms, this current results from the propagation of low sea surface height from the region of dense water formation anticyclonically along the topographic contours back to the formation region. This pressure gradient is then balanced by a cyclonic geostrophic flow. This basic structure is well predicted by a linear quasigeostrophic theory, a primitive equation model, and in rotating tank experiments. For sufficiently strong forcing, the anticyclonic circulation of the dense plume meets this cyclonic circulation to produce a sharp front and offshore advection of dense water at the bottom and buoyant water at the surface. This nonlinear limit is demonstrated in both the primitive equation model and in the tank experiments.
    Description: MAS was supported by the National Science Foundation under Grant OCE-1534618. Support for CC was given by the WHOI Ocean Climate Change Institute Proposal 27071273.
    Description: 2018-03-20
    Keywords: Bottom currents ; Buoyancy ; Ocean dynamics ; Density currents
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 14
    facet.materialart.
    Unknown
    American Meteorological Society
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2009. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 39 (2009): 1060-1068, doi:10.1175/2008JPO3996.1.
    Description: The response of a weakly stratified layer of fluid to a surface cooling distribution is investigated with linear theory in an attempt to clarify recent numerical results concerning the sinking of cooled water in polar ocean boundary currents. A channel of fluid is forced at the surface by a cooling distribution that varies in the down-channel as well as the cross-channel directions. The resulting geostrophic flow in the central region of the channel impinges on its boundaries, and regions of strong downwelling are observed. For the parameters of the problem investigated, the downwelling occurs in a classical Stewartson layer but the forcing of the layer leads to an unusual relation with the interior flow, which is forced to satisfy the thermal condition on the boundary while the geostrophic normal flow in the interior is brought to rest in the boundary layer. As a consequence of the layer’s dynamics, the resulting long-channel flow exhibits a nonmonotonic approach to the interior flow, and the strongest vertical velocities are limited to the boundary layer whose scale is so small that numerical models resolve the region only with great difficulty. The analytical model presented here is able to reproduce key features of the previous nonlinear numerical calculations.
    Description: This research was supported in part by NSF Grant OCE 0451086.
    Keywords: Forcing ; Boundary currents ; Upwelling, downwelling
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2008. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 38 (2008): 1992-2002, doi:10.1175/2008JPO3669.1.
    Description: This paper extends A. Bracco and J. Pedlosky’s investigation of the eddy-formation mechanism in the eastern Labrador Sea by including a more realistic depiction of the boundary current. The quasigeostrophic model consists of a meridional, coastally trapped current with three vertical layers. The current configuration and topographic domain are chosen to match, as closely as possible, the observations of the boundary current and the varying topographic slope along the West Greenland coast. The role played by the bottom-intensified component of the boundary current on the formation of the Labrador Sea Irminger Rings is explored. Consistent with the earlier study, a short, localized bottom-trapped wave is responsible for most of the perturbation energy growth. However, for the instability to occur in the three-layer model, the deepest component of the boundary current must be sufficiently strong, highlighting the importance of the near-bottom flow. The model is able to reproduce important features of the observed vortices in the eastern Labrador Sea, including the polarity, radius, rate of formation, and vertical structure. At the time of formation, the eddies have a surface signature as well as a strong circulation at depth, possibly allowing for the transport of both surface and near-bottom water from the boundary current into the interior basin. This work also supports the idea that changes in the current structure could be responsible for the observed interannual variability in the number of Irminger Rings formed.
    Description: AB is supported by WHOI unrestricted funds, JP by the National Science Foundation OCE 85108600, and RP by 0450658.
    Keywords: Eddies ; Boundary currents ; Quasigeostrophic models ; North Atlantic ; Coastlines
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2008. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 38 (2008): 2294-2307, doi:10.1175/2008JPO3853.1.
    Description: A linear stability analysis of a meridional boundary current on the beta plane is presented. The boundary current is idealized as a constant-speed meridional jet adjacent to a semi-infinite motionless far field. The far-field region can be situated either on the eastern or the western side of the jet, representing a western or an eastern boundary current, respectively. It is found that when unstable, the meridional boundary current generates temporally growing propagating waves that transport energy away from the locally unstable region toward the neutral far field. This is the so-called radiating instability and is found in both barotropic and two-layer baroclinic configurations. A second but important conclusion concerns the differences in the stability properties of eastern and western boundary currents. An eastern boundary current supports a greater number of radiating modes over a wider range of meridional wavenumbers. It generates waves with amplitude envelopes that decay slowly with distance from the current. The radiating waves tend to have an asymmetrical horizontal structure—they are much longer in the zonal direction than in the meridional, a consequence of which is that unstable eastern boundary currents, unlike western boundary currents, have the potential to act as a source of zonal jets for the interior of the ocean.
    Description: This work was supported by the National Science Foundation through Grants OCE- 0423975 (MS, HH) and OCE-9901654 (JP). HH would like to thank her thesis committee as well as the MIT– WHOI Joint Program for partial financial support.
    Keywords: Instability ; Boundary currents
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 17
    facet.materialart.
    Unknown
    American Meteorological Society
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2007. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 37 (2007): 2776-2784, doi:10.1175/2007JPO3710.1.
    Description: The bottom boundary layer of a stratified flow on a coastal continental shelf is examined using the model of Chapman and Lentz. The flow is driven by a surface stress, uniform in the alongshore coordinate, in a downwelling-favorable direction. The stress diminishes in the offshore direction and produces an Ekman pumping, as well as an onshore Ekman flux. The model yields an interior flow, sandwiched between an upper Ekman layer and a bottom boundary layer. The interior has a horizontal density gradient produced by a balance between horizontal diffusion of density and vertical advection of a background vertical density gradient. The interior flow is vertically sheared and in thermal wind balance. Whereas the original model of Chapman and Lentz considered an alongshore flow that is freely evolving, the present note focuses on the equilibrium structure of a flow driven by stress and discusses the vertical and lateral structure of the flow and, in particular, the boundary layer thickness. The vertical diffusivity of density in the bottom boundary layer is considered so strong, locally, as to render the bottom boundary layer’s density a function of only offshore position. Boundary layer budgets of mass, momentum, and buoyancy determine the barotropic component of the interior flow as well as the boundary layer thickness, which is a function of the offshore coordinate. The alongshore flow has enhanced vertical shear in the boundary layer that reduces the alongshore flow in the boundary layer; however, the velocity at the bottom is generally not zero but produces a stress that locally balances the applied surface stress. The offshore transport in the bottom boundary layer therefore balances the onshore surface Ekman flux. The model predicts the thickness of the bottom boundary layer, which is a complicated function of several parameters, including the strength of the forcing stress, the vertical and horizontal diffusion coefficients in the interior, and the horizontal diffusion in the boundary layer. The model yields a boundary layer over only a finite portion of the bottom slope if the interior diffusion coefficients are too large; otherwise, the layer extends over the full lateral extent of the domain.
    Description: This research was supported in part by NSF Grant OCE-851086.00.
    Keywords: Boundary layer ; Continental shelf ; Coastal flows ; Ekman pumping ; Forcing
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2007. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 37 (2007): 1001-1021, doi:10.1175/jpo3034.1.
    Description: The nonlinear dynamics of baroclinically unstable waves in a time-dependent zonal shear flow is considered in the framework of the two-layer Phillips model on the beta plane. In most cases considered in this study the amplitude of the shear is well below the critical value of the steady shear version of the model. Nevertheless, the time-dependent problem in which the shear oscillates periodically is unstable, and the unstable waves grow to substantial amplitudes, in some cases with strongly nonlinear and turbulent characteristics. For very small values of the shear amplitude in the presence of dissipation an analytical, asymptotic theory predicts a self-sustained wave whose amplitude undergoes a nonlinear oscillation whose period is amplitude dependent. There is a sensitive amplitude dependence of the wave on the frequency of the oscillating shear when the shear amplitude is small. This behavior is also found in a truncated model of the dynamics, and that model is used to examine larger shear amplitudes. When there is a mean value of the shear in addition to the oscillating component, but such that the total shear is still subcritical, the resulting nonlinear states exhibit a rectified horizontal buoyancy flux with a nonzero time average as a result of the instability of the oscillating shear. For higher, still subcritical, values of the shear, a symmetry breaking is detected in which a second cross-stream mode is generated through an instability of the unstable wave although this second mode would by itself be stable on the basic time-dependent current. For shear values that are substantially subcritical but of order of the critical shear, calculations with a full quasigeostrophic numerical model reveal a turbulent flow generated by the instability. If the beta effect is disregarded, the inviscid, linear problem is formally stable. However, calculations show that a small degree of nonlinearity is enough to destabilize the flow, leading to large amplitude vacillations and turbulence. When the most unstable wave is not the longest wave in the system, a cascade up scale to longer waves is observed. Indeed, this classically subcritical flow shows most of the qualitative character of a strongly supercritical flow. This result supports previous suggestions of the important role of background time dependence in maintaining the atmospheric and oceanic synoptic eddy field.
    Description: GRF was supported by NSF Grant OCE-0137023, and JP was supported by NSF Grant OCE- 9901654.
    Keywords: Baroclinic currents ; Shear flows ; Wave instability ; Oscillating shear ; Time dependence
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2007. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 37 (2007): 1177-1191, doi:10.1175/jpo3054.1.
    Description: The stability of baroclinic Rossby waves in large ocean basins is examined, and the quasigeostrophic (QG) results of LaCasce and Pedlosky are generalized. First, stability equations are derived for perturbations on large-scale waves, using the two-layer shallow-water system. These equations resemble the QG stability equations, except that they retain the variation of the internal deformation radius with latitude. The equations are solved numerically for different initial conditions through eigenmode calculations and time stepping. The fastest-growing eigenmodes are intensified at high latitudes, and the slower-growing modes are intensified at lower latitudes. All of the modes have meridional scales and growth times that are comparable to the deformation radius in the latitude range where the eigenmode is intensified. This is what one would expect if one had applied QG theory in latitude bands. The evolution of large-scale waves was then simulated using the Regional Ocean Modeling System primitive equation model. The results are consistent with the theoretical predictions, with deformation-scale perturbations growing at rates inversely proportional to the local deformation radius. The waves succumb to the perturbations at the mid- to high latitudes, but are able to cross the basin at low latitudes before doing so. Also, the barotropic waves produced by the instability propagate faster than the baroclinic long-wave speed, which may explain the discrepancy in speeds noted by Chelton and Schlax.
    Description: PEI was supported by a postdoctoral grant from the Norwegian Research Council, JHL was supported under the Norwegian NOCLIM II program, and JP was partly supported by NSF OCE 0451086.
    Keywords: Rossby waves ; Ocean models ; Barotropic flows ; Baroclinic flows
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 20
    facet.materialart.
    Unknown
    American Meteorological Society
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2007. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 37 (2007): 2158–2171, doi:10.1175/jpo3100.1.
    Description: The triad instability of the large-scale, first-mode, baroclinic Rossby waves is studied in the context of the planetary scale when the Coriolis parameter is to its lowest order varying with latitude. Accordingly, rather than remain constant as in quasigeostrophic theory, the deformation radius also changes with latitude, yielding new and interesting features to the propagation and triad instability processes. On the planetary scale, baroclinic waves vary their meridional wavenumbers along group velocity rays while they conserve both frequencies and zonal wavenumbers. The amplitudes of both barotropic and baroclinic waves would change with latitude along a ray path in the same way that the Coriolis parameter does if effects of the nonlinear interaction are ignored. The triad interaction for a specific triad is localized within a small latitudinal band where the resonance conditions are satisfied and quasigeostrophic theory is applicable locally. Using the growth rate from that theory as a measure, at each latitude along the ray path of the basic wave, a barotropic wave and a secondary baroclinic wave are picked up to form the most unstable triad and the distribution of this maximum growth rate is examined. It is found to increase southward under the assumption that triad interactions do not cause a noticeable decrease in the quantity of the basic wave’s amplitude divided by the Coriolis parameter. Different barotropic waves that maximize the growth rate at different latitudes have almost the same meridional length scale, on the order of the deformation radius. With many rays starting from different latitudes on the eastern boundary and with wavenumbers on each of them satisfying the no-normal-flow condition, the resulting two-dimensional distribution of the growth rate is a complicated function of the relative relations of zonal wavenumbers or frequencies on different rays and the orientation of the eastern boundary. In general, the growth rate is largest on rays originating to the north.
    Description: This research was supported in part by NSF OCE 0451086 and by the MIT/WHOI Joint Program in Physical Oceanography.
    Keywords: Rossby waves ; Planetary waves ; Waves, oceanic
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...