GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Document type
Keywords
Years
  • 11
    Publication Date: 2022-05-25
    Description: © The Author(s), 2015. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Scientific Reports 5 (2015): 12152, doi:10.1038/srep12152.
    Description: Natural CO2 releases from shallow marine hydrothermal vents are assumed to mix into the water column, and not accumulate into stratified seafloor pools. We present newly discovered shallow subsea pools located within the Santorini volcanic caldera of the Southern Aegean Sea, Greece, that accumulate CO2 emissions from geologic reservoirs. This type of hydrothermal seafloor pool, containing highly concentrated CO2, provides direct evidence of shallow benthic CO2 accumulations originating from sub-seafloor releases. Samples taken from within these acidic pools are devoid of calcifying organisms, and channel structures among the pools indicate gravity driven flow, suggesting that seafloor release of CO2 at this site may preferentially impact benthic ecosystems. These naturally occurring seafloor pools may provide a diagnostic indicator of incipient volcanic activity and can serve as an analog for studying CO2 leakage and benthic accumulations from subsea carbon capture and storage sites.
    Description: This research was supported by the Eurofleets Caldera 2012 Project (EU), a NASA Astrobiology Science & Technology for Exploring Planets grant #NNX09AB76G (USA), a CAREER Award grant #OCE-0955674 to R. Camilli from the National Science Foundation (USA), and IPGP (France).
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2022-05-26
    Description: Author Posting. © American Geophysical Union, 2014. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Solid Earth 119 (2014): 2543–2566, doi:10.1002/2013JB010478.
    Description: We deployed autonomous temperature sensors at black smoker chimneys, cracks, and diffuse flow areas at the Lucky Strike hydrothermal field (Mid-Atlantic Ridge, ~37°17'N) between summer 2009 and summer 2012 and contemporaneously measured tidal pressures and currents as part of the long-term MoMAR experiment to monitor hydrothermal activity. We classify the temperature data according to the hydrogeologic setting of the measurement sites: a high-temperature regime (〉190°C) representing discharge of essentially unmixed, primary hydrothermal fluids through chimneys, an intermediate-temperature regime (10–100°C) associated with mixing of primary fluids with cold pore fluids discharging through cracks, and a low-temperature regime (〈10°C) associated with a thermal boundary layer forming over bacterial mats associated with diffuse outflow of warm fluids. Temperature records from all the regimes exhibit variations at semi-diurnal tidal periods, and cross-spectral analyses reveal that high-temperature discharge correlates to tidal pressure while low-temperature discharge correlates to tidal currents. Intermediate-temperature discharge exhibits a transitional behavior correlating to both tidal pressure and currents. Episodic perturbations, with transient temperature drops of up to ~150°C, which occur in the high-temperature and intermediate-temperature records, are not observed on multiple probes (including nearby probes at the same site), and they are not correlated with microearthquake activity, indicating that the perturbation mechanism is highly localized at the measurement sites within the hydrothermal structures. The average temperature at a given site may increase or decrease at annual time scales, but the average temperature of the hydrothermal field, as a whole, appears to be stable over our 3 year observation period.
    Description: This project was funded by CNRS/IFREMER through the 2009, 2010, 2011, and 2012 cruises within the MoMAR program (France) and by ANR (France) Mothseim Project NT05-3 42213, led by J. Escartín. T. Barreyre was supported by University Paris Diderot (Paris 7—France) and Institut de Physique du Globe de Paris (IPGP, France).
    Description: 2014-10-02
    Keywords: Hydrothermal activity ; Time-series ; Spectral analysis ; Tidal forcing ; Temperature variations ; Mid-ocean ridge
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2022-10-26
    Description: © The Author(s), 2019. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Ponte, R. M., Carson, M., Cirano, M., Domingues, C. M., Jevrejeva, S., Marcos, M., Mitchum, G., van de Wal, R. S. W., Woodworth, P. L., Ablain, M., Ardhuin, F., Ballu, V., Becker, M., Benveniste, J., Birol, F., Bradshaw, E., Cazenave, A., De Mey-Fremaux, P., Durand, F., Ezer, T., Fu, L., Fukumori, I., Gordon, K., Gravelle, M., Griffies, S. M., Han, W., Hibbert, A., Hughes, C. W., Idier, D., Kourafalou, V. H., Little, C. M., Matthews, A., Melet, A., Merrifield, M., Meyssignac, B., Minobe, S., Penduff, T., Picot, N., Piecuch, C., Ray, R. D., Rickards, L., Santamaria-Gomez, A., Stammer, D., Staneva, J., Testut, L., Thompson, K., Thompson, P., Vignudelli, S., Williams, J., Williams, S. D. P., Woppelmann, G., Zanna, L., & Zhang, X. Towards comprehensive observing and modeling systems for monitoring and predicting regional to coastal sea level. Frontiers in Marine Science, 6, (2019): 437, doi:10.3389/fmars.2019.00437.
    Description: A major challenge for managing impacts and implementing effective mitigation measures and adaptation strategies for coastal zones affected by future sea level (SL) rise is our limited capacity to predict SL change at the coast on relevant spatial and temporal scales. Predicting coastal SL requires the ability to monitor and simulate a multitude of physical processes affecting SL, from local effects of wind waves and river runoff to remote influences of the large-scale ocean circulation on the coast. Here we assess our current understanding of the causes of coastal SL variability on monthly to multi-decadal timescales, including geodetic, oceanographic and atmospheric aspects of the problem, and review available observing systems informing on coastal SL. We also review the ability of existing models and data assimilation systems to estimate coastal SL variations and of atmosphere-ocean global coupled models and related regional downscaling efforts to project future SL changes. We discuss (1) observational gaps and uncertainties, and priorities for the development of an optimal and integrated coastal SL observing system, (2) strategies for advancing model capabilities in forecasting short-term processes and projecting long-term changes affecting coastal SL, and (3) possible future developments of sea level services enabling better connection of scientists and user communities and facilitating assessment and decision making for adaptation to future coastal SL change.
    Description: RP was funded by NASA grant NNH16CT00C. CD was supported by the Australian Research Council (FT130101532 and DP 160103130), the Scientific Committee on Oceanic Research (SCOR) Working Group 148, funded by national SCOR committees and a grant to SCOR from the U.S. National Science Foundation (Grant OCE-1546580), and the Intergovernmental Oceanographic Commission of UNESCO/International Oceanographic Data and Information Exchange (IOC/IODE) IQuOD Steering Group. SJ was supported by the Natural Environmental Research Council under Grant Agreement No. NE/P01517/1 and by the EPSRC NEWTON Fund Sustainable Deltas Programme, Grant Number EP/R024537/1. RvdW received funding from NWO, Grant 866.13.001. WH was supported by NASA (NNX17AI63G and NNX17AH25G). CL was supported by NASA Grant NNH16CT01C. This work is a contribution to the PIRATE project funded by CNES (to TP). PT was supported by the NOAA Research Global Ocean Monitoring and Observing Program through its sponsorship of UHSLC (NA16NMF4320058). JS was supported by EU contract 730030 (call H2020-EO-2016, “CEASELESS”). JW was supported by EU Horizon 2020 Grant 633211, Atlantos.
    Keywords: Coastal sea level ; Sea-level trends ; Coastal ocean modeling ; Coastal impacts ; Coastal adaptation ; Observational gaps ; Integrated observing system
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 14
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Barreyre, Thibaut; Escartín, Javier; Sohn, Robert A; Cannat, Mathilde; Ballu, Valérie; Crawford, Wayne C (2014): Temporal variability and tidal modulation of hydrothermal exit-fluid temperatures at the Lucky Strike deep-sea vent field, Mid-Atlantic Ridge. Journal of Geophysical Research: Solid Earth, 119(4), 2543-2566, https://doi.org/10.1002/2013JB010478
    Publication Date: 2023-05-12
    Description: We deployed autonomous temperature sensors at black smoker chimneys, cracks, and diffuse flow areas at the Lucky Strike hydrothermal field (Mid-Atlantic Ridge, ~37°17'N) between summer 2009 and summer 2012 and contemporaneously measured tidal pressures and currents as part of the long-term MoMAR experiment to monitor hydrothermal activity. We classify the temperature data according to the hydrogeologic setting of the measurement sites: a high-temperature regime (〉190°C) representing discharge of essentially unmixed, primary hydrothermal fluids through chimneys, an intermediate-temperature regime (10-100°C) associated with mixing of primary fluids with cold pore fluids discharging through cracks, and a low-temperature regime (〈10°C) associated with a thermal boundary layer forming over bacterial mats associated with diffuse outflow of warm fluids. Temperature records from all the regimes exhibit variations at semi-diurnal tidal periods, and cross-spectral analyses reveal that high-temperature discharge correlates to tidal pressure while low-temperature discharge correlates to tidal currents. Intermediate-temperature discharge exhibits a transitional behavior correlating to both tidal pressure and currents. Episodic perturbations, with transient temperature drops of up to ~150°C, which occur in the high-temperature and intermediate-temperature records, are not observed on multiple probes (including nearby probes at the same site), and they are not correlated with microearthquake activity, indicating that the perturbation mechanism is highly localized at the measurement sites within the hydrothermal structures. The average temperature at a given site may increase or decrease at annual time scales, but the average temperature of the hydrothermal field, as a whole, appears to be stable over our 3 year observation period.
    Keywords: MoMAR; Monitoring the Mid-Atlantic Ridge
    Type: Dataset
    Format: application/zip, 53 datasets
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2023-05-12
    Keywords: DATE/TIME; DEPTH, water; High temperature sensor, MISO-Woods Hole; Lucky Strike Hydrothermal Field, Mont Segur; MoMAR; Monitoring the Mid-Atlantic Ridge; MS_V01_090906_101004_HW0007A; Temperature, water; Temperature recorder; TEMP-R
    Type: Dataset
    Format: text/tab-separated-values, 23854 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2023-05-12
    Keywords: CR_V01_101014_110703_HW0010B; DATE/TIME; DEPTH, water; High temperature sensor, MISO-Woods Hole; Lucky Strike Hydrothermal Field, Crystal; MoMAR; Monitoring the Mid-Atlantic Ridge; Temperature, water; Temperature recorder; TEMP-R
    Type: Dataset
    Format: text/tab-separated-values, 16279 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2023-05-12
    Keywords: CR_V02_110703_120716_HW0019B; DATE/TIME; DEPTH, water; High temperature sensor, MISO-Woods Hole; Lucky Strike Hydrothermal Field, Crystal; MoMAR; Monitoring the Mid-Atlantic Ridge; Temperature, water; Temperature recorder; TEMP-R
    Type: Dataset
    Format: text/tab-separated-values, 24407 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2023-05-12
    Keywords: DATE/TIME; DEPTH, water; Low temperature sensor, MISO-Woods Hole; Lucky Strike Hydrothermal Field, Mont Segur; MoMAR; Monitoring the Mid-Atlantic Ridge; MS_C01_090907_101004_LW00004; Temperature, water; Temperature recorder; TEMP-R
    Type: Dataset
    Format: text/tab-separated-values, 38133 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2023-05-12
    Keywords: DATE/TIME; DEPTH, water; Low temperature sensor, MISO-Woods Hole; Lucky Strike Hydrothermal Field, Mont Segur; MoMAR; Monitoring the Mid-Atlantic Ridge; MS_C04_101011_110706_LW00002; Temperature, water; Temperature recorder; TEMP-R
    Type: Dataset
    Format: text/tab-separated-values, 16526 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2023-05-12
    Keywords: DATE/TIME; DEPTH, water; Low temperature sensor, MISO-Woods Hole; Lucky Strike Hydrothermal Field, Mont Segur; MoMAR; Monitoring the Mid-Atlantic Ridge; MS_C04_110710_120716_LW00015; Temperature, water; Temperature recorder; TEMP-R
    Type: Dataset
    Format: text/tab-separated-values, 24403 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...