GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Keywords
Language
  • 11
    Publication Date: 2019-11-15
    Type: Conference or Workshop Item , NonPeerReviewed
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2021-07-09
    Description: Focused fluid flow shapes the evolution of marine sedimentary basins by transferring fluids and pressure across geological formations. Vertical fluid conduits may form where localised overpressure breaches a cap rock (permeability barrier) and thereby transports overpressured fluids towards shallower reservoirs or the surface. Here, we study field outcrops of an Eocene fluid flow system at Pobiti Kamani and Beloslav Quarry (~15 km West of Varna, Bulgaria), where large carbonate-cemented conduits formed in highly permeable, unconsolidated, marine sands of the northern Tethys Margin. Using an uncrewed aerial vehicle with an RGB sensor camera we produced ortho-rectified image mosaics, digital elevation models, and point clouds of the two km-scale outcrop areas. Based on these data, geological field observations, and petrological analysis of rock/core samples, we mapped and analysed fractures and vertical fluid conduits with centimetre accuracy. Our results show that both outcrops comprise several hundred carbonate-cemented fluid conduits (pipes), oriented perpendicular to bedding, and at least seven bedding-parallel carbonate interbeds which differ from the hosting sand formation only by their increased amount of cementation. From these observations, we conclude that carbonate precipitation likely initiated around areas of focused fluid flow, where methane entered the formation from the underlying fractured subsurface. These first carbonates formed the outer walls of the pipes and continued to grow inward leading to self-sustaining and self-reinforcing focused fluid flow. Our results, supported by literature-based carbon and oxygen isotope analyses of the carbonates, indicate that ambient seawater and advected fresh/brackish water were involved in the carbonate precipitation by microbial methane oxidation. We propose that similar structures may also form in modern settings where focused fluid flow advects fluids into overlying sand-dominated formations, which has wide implications for our understanding of how focusing of fluids works in sedimentary basins with broad consequences for the migration of water, oil, and gas
    Type: Conference or Workshop Item , NonPeerReviewed
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2021-05-11
    Description: Large volcanic debris flows associated with volcanic island flank collapses may cause devastating tsunamis as they enter the ocean. Computer simulations show that the largest of these volcanic debris flows on oceanic islands such as Hawaii or the Canaries can cause ocean-wide tsunamis (Løvholt et al., 2008; Waythomas et al., 2009). However, the magnitude of these tsunamis is subject to on-going debate as it depends particularly on landslide transport and emplacement processes (Harbitz et al. 2013). A robust understanding of these factors is thus essential in order to assess the hazard of volcanic flank collapses. Recent studies have shown that emplacement processes are far more complex than assumed previously. With a collapsed volume of about 5 km3 the 1888 Ritter Island flank collapse is the largest in historic times and represents an ideal natural laboratory for several reasons: (I) The collapse is comparatively young and the marine deposits are clearly visible, (II) the pre-collapse shape of the island is historically documented and (III) eyewitness reports documenting tsunami arrival times, run-up heights and inundation levels on neighboring islands are available. We propose to collect bathymetric, high resolution 2D and 3D seismic data as well as seafloor samples from the submarine deposits off Ritter Island to learn about the mobility and emplacement dynamics of the 1888 flank collapse landslide. A comparison to similar studies from other volcanic islands will provide an improved understanding of emplacement processes of volcanic island landslides and their overall tsunamigenic potential. In addition, a detailed knowledge of the 1888 landslide processes in combination with tsunami constraints from eyewitness reports provides a unique possibility to determine the landslide velocity, which can then be used in subsequent hazard analyses for ocean islands.
    Type: Report , NonPeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2021-01-28
    Type: Report , NonPeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2018-04-27
    Description: SO241 set out to test the hypothesis that rift-related magmatism is able to increase carbon emissions from sedimentary basins to the extent that they can actively force climate. To this end we investigated a study area in the Guaymas Basin in the Gulf of California which is one of very few geological settings where rift-related magmatism presently leads to magmatic intrusions into a sediment basin. During the cruise we collected 1100 km of 2D seismic lines to image the extent and volume of magmatic intrusions as well as the extent of metamorphic overprinting of the surrounding sediments and associated subsurface sediment mobilization. We selected three typical seep sites above magmatic intrusions for detailed geochemical studies using gravity corers, multicorers and TV grab. With these samples we will be able to determine the pore water composition to assess the amount and composition of hydrocarbon compounds that are released from these systems. Detailed ocean bottom seismometer measurements at a seep site in the center of the Guaymas Basin will provide further insights into effects of magmatic intrusions on carbon release and diagenetic overprinting of the sediments. It will be possible to reconstruct its long-term seepage history from big carbonate blocks that we have collected with a TV-grab. The northeastern margin of the Guaymas Basin is known for the presence of gas hydrates. During the cruise we collected several seismic lines, which show a clear but unusually shallow BSR indicating high heat flow in the region. Using the seismic data we discovered a previously unknown geological structure on the flank of the northern rift segment: a large mound that seems to consist entirely of black smoker deposits. It seems to be the result of a recent intrusion into the underlying sediments and changes the view how such systems function. The structure was investigated with a comprehensive geochemical, geothermal, and video surveying program which revealed at least seven vents that are active simultaneously. These vents inject methane and helium-rich vent fluids several hundred meters up into the water column. These findings suggest that large-scale magmatism, for example during the opening of an ocean basin under the influence of a hot spot, can be an effective way of liberating large amounts of carbon high up into the water column. The data collected during SO241 will allow us to constrain the amount of carbon that can escape into the atmosphere during LIP emplacement and their relevance on a global scale can be assessed. In addition to reaching the main objectives of the project we discovered a large landslide complex that was probably associated with a tsunami.
    Type: Report , NonPeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 16
    facet.materialart.
    Unknown
    Springer International Publishing
    In:  In: Submarine Mass Movements and their Consequences : 7th International Symposium. , ed. by Lamarche, G. Springer International Publishing, Cham, pp. 145-154.
    Publication Date: 2017-11-22
    Description: Agadir Canyon is one of the largest submarine canyons in the World, supplying giant submarine sediment gravity flows to the Agadir Basin and the wider Moroccan Turbidite System. While the Moroccan Turbidite System is extremely well investigated, almost no data from the source region, i.e. the Agadir Canyon, are available. New acoustic and sedimentological data of the Agadir Canyon area were collected during RV Maria S. Merian Cruise 32 in autumn 2013. The data show a prominent headwall area around 200 km south of the head of Agadir Canyon. The failure occurred along a pronounced weak layer in a sediment wave field. The slab-type failure rapidly disintegrated and transformed into a debris flow, which entered Agadir Canyon at 2500 m water depth. Interestingly, the debris flow did not disintegrate into a turbidity current when it entered the canyon despite a significant increase in slope angle. Instead, the material was transported as debrite for at least another 200 km down the canyon. It is unlikely that this giant debris flow significantly contributed to the deposits in the wider Moroccan Turbidite System.
    Type: Book chapter , NonPeerReviewed
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 17
    facet.materialart.
    Unknown
    Geological Society London
    In:  In: Subaqueous Mass Movements and their Consequences: Advances in Process Understanding, Monitoring and Hazard Assessments. , ed. by Georgiopoulou, A. Special Publications Geological Society London, 500 . Geological Society London, London, pp. 551-566.
    Publication Date: 2020-08-03
    Description: The Tuaheni Landslide Complex (TLC) is characterised by areas of compression upslope and extension downslope. It has been thought to consist of a stack of two genetically linked landslide units identified on seismic data. We use 3D seismic reflection, bathymetry data, and IODP core U1517C (Expedition 372), to understand the internal structures, deformation mechanisms and depositional processes of the TLC deposits. Unit II and Unit III of U1517C correspond to the two chaotic units in 3D seismic data. In the core, Unit II shows deformation whereas Unit III appears more like an in situ sequence. Variance attribute analysis shows that Unit II is split in lobes around a coherent stratified central ridge and is bounded by scarps. By contrast, we find that Unit III is continuous beneath the central ridge and has an upslope geometry that we interpret as a channellevee system. Both units show evidence of lateral spreading due to the presence of the Tuaheni Canyon removing support from the toe. Our results suggest that Unit II and Unit III are not genetically linked, that they are separated substantially in time and they had different emplacement mechanisms, but fail under similar circumstances.
    Type: Book chapter , NonPeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2021-08-18
    Type: Conference or Workshop Item , NonPeerReviewed , info:eu-repo/semantics/conferenceObject
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2019-09-23
    Description: In subduction zones upper-plate normal faults have long been considered a tectonic feature primarily associated with erosive margins. However, increasing data coverage has proven that similar features also occur in accretionary margins, such as Cascadia, Makran, Nankai or Central Chile, where kinematics are dominated by compression. Considering their wide distribution there is, without doubt, a significant lack of qualitative and quantitative knowledge regarding the role and importance of normal faults and zones of extension for the seismotectonic evolution of accretionary margins. We use a high-resolution 3D P-Cable seismic volume from the Hikurangi Margin acquired in 2014 to analyze the spatial distribution and mechanisms of upper-plate normal faulting. The study area is located at the upper continental slope in the area of the Tuaheni landslide complex. In detail we aim to (1) map the spatial distribution of normal faults and characterize their vertical throws, strike directions, and dip angles; (2) investigate their possible influence on fluid migration in an area, where gas hydrates are present; (3) discuss the mechanisms that may cause extension of the upper-slope in the study area. Beneath the Tuaheni Landslide Complex we mapped about 200 normal faults. All faults have low displacements (〈15 m) and dip at high (〉 65°) angles. About 71% of the faults dip landward. We found two main strike directions, with the majority of faults striking 350-10°, parallel to the deformation front. A second group of faults strikes 40-60°. The faults crosscut the BSR, which indicates the base of the gas hydrate zone. In combination with seismically imaged bright-spots and pull-up structures, this indicates that the normal faults effectively transport fluids vertically across the base of the gas hydrate zone. Localized uplift, as indicated by the presence of the Tuaheni Ridge, might support normal faulting in the study area. In addition, different subduction rates across the margin may also favor extension between the segments. Future work will help to further untangle the mechanisms that cause extension of the upper continental slope.
    Type: Conference or Workshop Item , NonPeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2019-04-02
    Type: Conference or Workshop Item , NonPeerReviewed
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...