GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
Schlagwörter
Sprache
Erscheinungszeitraum
  • 1
    Schlagwort(e): Hochschulschrift
    Materialart: Online-Ressource
    Seiten: 1 Online-Ressource (154 Blatt = 7 MB) , Illustrationen, Diagramme
    Sprache: Englisch
    Anmerkung: Zusammenfassung in deutscher und englischer Sprache
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Schlagwort(e): Hochschulschrift
    Materialart: Online-Ressource
    Seiten: 1 Online-Ressource (52 Blatt = 3,4 MB)
    Sprache: Englisch
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    In: Global biogeochemical cycles, Hoboken, NJ : Wiley, 1987, 23(2009), 1944-9224
    In: volume:23
    In: year:2009
    In: extent:11
    Beschreibung / Inhaltsverzeichnis: The oceans absorb and store a significant portion of anthropogenic CO2 emissions, but large uncertainties remain in the quantification of this sink. An improved assessment of the present and future oceanic carbon sink is therefore necessary to provide recommendations for long-term global carbon cycle and climate policies. The formation of North Atlantic Deep Water (NADW) is a unique fast track for transporting anthropogenic CO2 into the ocean's interior, making the deep waters rich in anthropogenic carbon. Thus the Atlantic is presently estimated to hold 38% of the oceanic anthropogenic CO2 inventory, although its volume makes up only 25% of the world ocean. Here we analyze the inventory change of anthropogenic CO2 in the Atlantic between 1997 and 2003 and its relationship to NADW formation. For the whole region between 20°S and 65°N the inventory amounts to 32.5 ± 9.5 Petagram carbon (Pg C) in 1997 and increases up to 36.0 ± 10.5 Pg C in 2003. This result is quite similar to earlier studies. Moreover, the overall increase of anthropogenic carbon is in close agreement with the expected change due to rising atmospheric CO2 levels of 1.69% a-1. On the other hand, when considering the subpolar region only, the results demonstrate that the recent weakening in the formation of Labrador Sea Water, a component of NADW, has already led to a decrease of the anthropogenic carbon inventory in this water mass. As a consequence, the overall inventory for the total water column in the western subpolar North Atlantic increased only by 2% between 1997 and 2003, much less than the 11% that would be expected from the increase in atmospheric CO2 levels.
    Materialart: Online-Ressource
    Seiten: 11 , graph. Darst
    ISSN: 1944-9224
    Sprache: Englisch
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 4
    In: Annual review of marine science, Palo Alto, Calif. : Annual Reviews, 2009, 2(2010), Seite 175-198, 1941-0611
    In: volume:2
    In: year:2010
    In: pages:175-198
    Beschreibung / Inhaltsverzeichnis: A significant impetus for recent ocean biogeochemical research has been to better understand the ocean's role as a sink for anthropogenic CO2. In the 1990s the global carbon survey of the World Ocean Circulation Experiment (WOCE) and the Joint Global Ocean Flux Study (JGOFS) inspired the development of several approaches for estimating anthropogenic carbon inventories in the ocean interior. Most approaches agree that the total global ocean inventory of Cant was around 120 Pg C in the mid-1990s. Today, the ocean carbon uptake rate estimates suggest that the ocean is not keeping pace with the CO2 emissions growth rate. Repeat occupations of the WOCE/JGOFS survey lines consistently show increases in carbon inventories over the last decade, but have not yet been synthesized enough to verify a slowdown in the carbon storage rate. There are many uncertainties in the future ocean carbon storage. Continued observations are necessary to monitor changes and understand mechanisms controlling ocean carbon uptake and storage in the future.
    Materialart: Online-Ressource
    Seiten: graph. Darst
    ISSN: 1941-0611
    Sprache: Englisch
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 5
    In: Earth system science data, Katlenburg-Lindau : Copernics Publications, 2009, 1(2009), Seite 7-24, 1866-3516
    In: volume:1
    In: year:2009
    In: pages:7-24
    Beschreibung / Inhaltsverzeichnis: Data on carbon and carbon-relevant hydrographic and hydrochemical parameters from previously non-publicly available cruise data sets in the Arctic, Atlantic and Southern Ocean have been retrieved and merged to a new database: CARINA (CARbon IN the Atlantic). These data have gone through rigorous quality control (QC) procedures to assure the highest possible quality and consistency. The data for most of the measured parameters in the CARINA data base were objectively examined in order to quantify systematic differences in the reported values, i.e. secondary quality control. Systematic biases found in the data have been corrected in the data products, i.e. three merged data files with measured, calculated and interpolated data for each of the three CARINA regions; Arctic Mediterranean Seas, Atlantic and Southern Ocean. Out of a total of 188 cruise entries in the CARINA database, 98 were conducted in the Atlantic Ocean and of these 84 cruises report nitrate values, 79 silicate, and 78 phosphate. Here we present details of the secondary QC for nutrients for the Atlantic Ocean part of CARINA. Procedures of quality control, including crossover analysis between cruises and inversion analysis of all crossover data are briefly described. Adjustments were applied to the nutrient values for 43 of the cruises in the Atlantic Ocean region. With these adjustments the CARINA database is consistent both internally as well as with GLODAP data, an oceanographic data set based on the World Hydrographic Program in the 1990s (Key et al., 2004). Based on our analysis we estimate the internal accuracy of the CARINA-ATL nutrient data to be: nitrate 1.5%; phosphate 2.6%; silicate 3.1%. The CARINA data are now suitable for accurate assessments of, for example, oceanic carbon inventories and uptake rates and for model validation.
    Materialart: Online-Ressource
    Seiten: graph. Darst
    ISSN: 1866-3516
    Sprache: Englisch
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 6
    Online-Ressource
    Online-Ressource
    Dazugehörige Bände
    In: Earth system science data, Katlenburg-Lindau : Copernics Publications, 2009, 2(2010), 1, Seite 1-15, 1866-3516
    In: volume:2
    In: year:2010
    In: number:1
    In: pages:1-15
    Beschreibung / Inhaltsverzeichnis: Water column data of carbon and carbon-relevant parameters have been collected and merged into a new database called CARINA (CARbon IN the Atlantic). In order to provide a consistent data set, all data have been examined for systematic biases and adjusted if necessary (secondary quality control (QC)). The CARINA data set is divided into three regions: the Arctic/Nordic Seas, the Atlantic region and the Southern Ocean. Here we present the CFC data for the Atlantic region, including the chlorofluorocarbons CFC-11, CFC-12 and CFC-113 as well as carbon tetrachloride (CCl4). The methods applied for the secondary quality control, a crossover analyses, the investigation of CFC ratios in the ocean and the CFC surface saturation are presented. Based on the results, the CFC data of some cruises are adjusted by a certain factor or given a "poor" quality flag.
    Materialart: Online-Ressource
    Seiten: graph. Darst
    ISSN: 1866-3516
    Sprache: Englisch
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 7
    Publikationsdatum: 2020-02-06
    Beschreibung: The Ocean Model Intercomparison Project (OMIP) focuses on the physics and biogeochemistry of the ocean component of Earth system models participating in the sixth phase of the Coupled Model Intercomparison Project (CMIP6). OMIP aims to provide standard protocols and diagnostics for ocean models, while offering a forum to promote their common assessment and improvement. It also offers to compare solutions of the same ocean models when forced with reanalysis data (OMIP simulations) vs. when integrated within fully coupled Earth system models (CMIP6). Here we detail simulation protocols and diagnostics for OMIP's biogeochemical and inert chemical tracers. These passive-tracer simulations will be coupled to ocean circulation models, initialized with observational data or output from a model spin-up, and forced by repeating the 1948–2009 surface fluxes of heat, fresh water, and momentum. These so-called OMIP-BGC simulations include three inert chemical tracers (CFC-11, CFC-12, SF6) and biogeochemical tracers (e.g., dissolved inorganic carbon, carbon isotopes, alkalinity, nutrients, and oxygen). Modelers will use their preferred prognostic BGC model but should follow common guidelines for gas exchange and carbonate chemistry. Simulations include both natural and total carbon tracers. The required forced simulation (omip1) will be initialized with gridded observational climatologies. An optional forced simulation (omip1-spunup) will be initialized instead with BGC fields from a long model spin-up, preferably for 2000 years or more, and forced by repeating the same 62-year meteorological forcing. That optional run will also include abiotic tracers of total dissolved inorganic carbon and radiocarbon, CTabio and 14CTabio, to assess deep-ocean ventilation and distinguish the role of physics vs. biology. These simulations will be forced by observed atmospheric histories of the three inert gases and CO2 as well as carbon isotope ratios of CO2. OMIP-BGC simulation protocols are founded on those from previous phases of the Ocean Carbon-Cycle Model Intercomparison Project. They have been merged and updated to reflect improvements concerning gas exchange, carbonate chemistry, and new data for initial conditions and atmospheric gas histories. Code is provided to facilitate their implementation.
    Materialart: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: text
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 8
    Publikationsdatum: 2021-04-21
    Beschreibung: Developing enduring capacity to monitor ocean life requires investing in people and their institutions to build infrastructure, ownership, and long-term support networks. International initiatives can enhance access to scientific data, tools and methodologies, and develop local expertise to use them, but without ongoing engagement may fail to have lasting benefit. Linking capacity development and technology transfer to sustained ocean monitoring is a win-win proposition. Trained local experts will benefit from joining global communities of experts who are building the comprehensive Global Ocean Observing System (GOOS). This two-way exchange will benefit scientists and policy makers in developing and developed countries. The first step toward the GOOS is complete: identification of an initial set of biological Essential Ocean Variables (EOVs) that incorporate the Group on Earth Observations (GEO) Essential Biological Variables (EBVs), and link to the physical and biogeochemical EOVs. EOVs provide a globally consistent approach to monitoring where the costs of monitoring oceans can be shared and where capacity and expertise can be transferred globally. Integrating monitoring with existing international reporting and policy development connects ocean observations with agreements underlying many countries' commitments and obligations, including under SDG 14, thus catalyzing progress toward sustained use of the ocean. Combining scientific expertise with international capacity development initiatives can help meet the need of developing countries to engage in the agreed United Nations (UN) initiatives including new negotiations for the conservation and sustainable use of marine biological diversity of areas beyond national jurisdiction, and the needs of the global community to understand how the ocean is changing.
    Materialart: Article , PeerReviewed
    Format: text
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 9
    facet.materialart.
    Unbekannt
    AGU (American Geophysical Union) | Wiley
    In:  Global Biogeochemical Cycles, 31 (8). pp. 1256-1270.
    Publikationsdatum: 2021-04-21
    Beschreibung: Based on an unprecedented dissolved barium (D_Ba) data set collected in the Mediterranean Sea during a zonal transect between the Lebanon coast and Gibraltar (M84/3 cruise, April 2011), we decompose the D_Ba distribution to isolate the contribution of biogeochemical processes from the impact of the oceanic circulation. We have built a simple parametric water mass analysis (Parametric Optimum Multiparameter analysis) to reconstruct the contribution of the different Mediterranean water masses to the thermohaline structure. These water mass fractions have then been used to successfully reconstruct the background vertical gradient of D_Ba reflecting the balance between the large-scale oceanic circulation and the biological activity over long time scales. Superimposed on the background field, several D_Ba anomalies have been identified. Positive anomalies are associated with topographic obstacles and may be explained by the dissolution of particulate biogenic barium (P_Ba barite) of material resuspended by the local currents. The derived dissolution rates range from 0.06 to 0.21 μmol m−2 d−1. Negative anomalies are present in the mesopelagic region of the western and eastern basins (except in the easternmost Levantine basin) as well as in the abyssal western basin. This represents the first quantification of the nonconservative component of the D_Ba signal. These mesopelagic anomalies could reflect the subtraction of D_Ba during P_Ba barite formation occurring during organic carbon remineralization. The deep anomalies may potentially reflect the transport of material toward the deep sea during winter deep convection and the subsequent remineralization. The D_Ba subtraction fluxes range from −0.07 to −1.28 μmol m−2 d−1. D_Ba-derived fluxes of P_Ba barite (up to 0.21 μmol m−2 d−1) and organic carbon (13 to 29 mmol C m−2 d−1) are in good agreement with other independent measurements suggesting that D_Ba can help constrain remineralization horizons. This study highlights the importance of quantifying the impact of the large-scale oceanic circulation in order to better understand the biogeochemical cycling of elements and to build reliable geochemical proxies.
    Materialart: Article , PeerReviewed
    Format: text
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 10
    Publikationsdatum: 2021-04-21
    Beschreibung: Iron (Fe) is an essential micronutrient for marine microbial organisms, and low supply controls productivity in large parts of the world’s ocean. The high latitude North Atlantic is seasonally Fe limited, but Fe distributions and source strengths are poorly constrained. Surface ocean dissolved Fe (DFe) concentrations were low in the study region (〈0.1 nM) in summer 2010, with significant perturbations during spring 2010 in the Iceland Basin as a result of an eruption of the Eyjafjallajökull volcano (up to 2.5 nM DFe near Iceland) with biogeochemical consequences. Deep water concentrations in the vicinity of the Reykjanes Ridge system were influenced by pronounced sediment resuspension, with indications for additional inputs by hydrothermal vents, with subsequent lateral transport of Fe and manganese plumes of up to 250–300 km. Particulate Fe formed the dominant pool, as evidenced by 4–17 fold higher total dissolvable Fe compared with DFe concentrations, and a dynamic exchange between the fractions appeared to buffer deep water DFe. Here we show that Fe supply associated with deep winter mixing (up to 103 nmol m−2 d−1) was at least ca. 4–10 times higher than atmospheric deposition, diffusive fluxes at the base of the summer mixed layer, and horizontal surface ocean fluxes.
    Materialart: Article , PeerReviewed
    Format: text
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...