GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2010-2014  (127)
Document type
Keywords
Language
Years
Year
  • 1
    Keywords: Hochschulschrift
    Type of Medium: Online Resource
    Pages: 1 Online-Ressource (154 Blatt = 7 MB) , Illustrationen, Diagramme
    Language: English
    Note: Zusammenfassung in deutscher und englischer Sprache
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Keywords: Hochschulschrift
    Type of Medium: Online Resource
    Pages: 1 Online-Ressource (52 Blatt = 3,4 MB)
    Language: English
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Earth system science data, Katlenburg-Lindau : Copernics Publications, 2009, 2(2010), 1, Seite 1-15, 1866-3516
    In: volume:2
    In: year:2010
    In: number:1
    In: pages:1-15
    Description / Table of Contents: Water column data of carbon and carbon-relevant parameters have been collected and merged into a new database called CARINA (CARbon IN the Atlantic). In order to provide a consistent data set, all data have been examined for systematic biases and adjusted if necessary (secondary quality control (QC)). The CARINA data set is divided into three regions: the Arctic/Nordic Seas, the Atlantic region and the Southern Ocean. Here we present the CFC data for the Atlantic region, including the chlorofluorocarbons CFC-11, CFC-12 and CFC-113 as well as carbon tetrachloride (CCl4). The methods applied for the secondary quality control, a crossover analyses, the investigation of CFC ratios in the ocean and the CFC surface saturation are presented. Based on the results, the CFC data of some cruises are adjusted by a certain factor or given a "poor" quality flag.
    Type of Medium: Online Resource
    Pages: graph. Darst
    ISSN: 1866-3516
    Language: English
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2021-04-21
    Description: The replenishment of consumed oxygen in the open ocean oxygen minimum zone (OMZ) off northwest Africa is accomplished by oxygen transport across and along density surfaces, i.e. diapycnal and isopycnal oxygen supply. Here the diapycnal oxygen supply is investigated using a large observational set of oxygen profiles and diapycnal mixing data from years 2008 to 2010. Diapycnal mixing is inferred from different sources: (i) a large-scale tracer release experiment, (ii) microstructure profiles, and (iii) shipboard acoustic current measurements plus density profiles. From these measurements, the average diapycnal diffusivity in the studied depth interval from 150 to 500m is estimated to be 1×10−5 m2 s−1, with lower and upper 95%confidence limits of 0.8×10−5 m2 s−1 and 1.4×10−5 m2 s−1. Diapycnal diffusivity in this depth range is predominantly caused by turbulence, and shows no significant vertical gradient. Diapycnal mixing is found to contribute substantially to the oxygen supply of the OMZ. Within the OMZ core, 1.5 μmol kg−1 yr−1 of oxygen is supplied via diapycnal mixing, contributing about one-third of the total demand. This oxygen which is supplied via diapycnal mixing originates from oxygen that has been laterally supplied within the upper CentralWater layer above the OMZ, and within the Antarctic Intermediate Water layer below the OMZ. Due to the existence of a separate shallow oxygen minimum at about 100m depth throughout most of the study area, there is no net vertical oxygen flux from the surface layer into the Central Water layer. Thus all oxygen supply of the OMZ is associated with remote pathways.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2021-04-21
    Description: The Mediterranean Sea is a semi-enclosed sea characterized by high salinities, temperatures and densities. The net evaporation exceeds the precipitation, driving an anti-estuarine circulation through the Strait of Gibraltar, contributing to very low nutrient concentrations. The Mediterranean Sea has an active overturning circulation, one shallow cell that communicates directly with the Atlantic Ocean, and two deep overturning cells, one in each of the two main basins. It is surrounded by populated areas and is thus sensitive to anthropogenic forcing. Several dramatic changes in the oceanographic and biogeochemical conditions have been observed during the past several decades, emphasizing the need to better monitor and understand the changing conditions and their drivers. During 2011 three oceanographic cruises were conducted in a coordinated fashion in order to produce baseline data of important physical and biogeochemical parameters that can be compared to historic data and be used as reference for future observational campaigns. In this article we provide information on the Mediterranean Sea oceanographic situation, and present a short review that will serve as background information for the special issue in Ocean Science on "Physical, chemical and biological oceanography of the Mediterranean Sea". An important contribution of this article is the set of figures showing the large-scale distributions of physical and chemical properties along the full length
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2021-04-21
    Description: The Mediterranean Sea (MedSea) is considered a "laboratory basin" being an ocean in miniature, suffering dramatic changes in its oceanographic and biogeochemical conditions derived from natural and anthropogenic forces. Moreover, the MedSea is prone to absorb and store anthropogenic carbon due to the particular CO2 chemistry and the active overturning circulation. Despite this, water column CO2 measurements covering the whole basin are scarce. This work aims to be a base-line for future studies about the CO2 system space-time variability in the MedSea combining historic and modern CO2 cruises in the whole area. Here we provide an extensive vertical and longitudinal description of the CO2 system variables (total alkalinity – TA, dissolved inorganic carbon – DIC and pH) along an East-West transect and across the Sardinia-Sicily passage in the MedSea from two oceanographic cruises conducted in 2011 measuring CO2 variables in a coordinated fashion, the RV Meteor M84/3 and the RV Urania EuroFleets 11, respectively. In this sense, we provide full-depth and length CO2 distributions across the MedSea, and property-property plots showing in each sub-basin post-Eastern Mediterranean Transient (EMT) situation with regard to TA, DIC and pH. The over-determined CO2 system in 2011 allowed performing the first internal consistency analysis for the particularly warm, high salinity and alkalinity MedSea waters. The CO2 constants by Mehrbach et al. (1973) refitted by Dickson and Millero (1987) are recommended. The sensitivity of the CO2 system to the atmospheric CO2 increase, DIC and/or TA changes is evaluated by means of the Revelle and buffer factors.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    Copernicus Publications (EGU)
    In:  Ocean Science, 10 . pp. 439-457.
    Publication Date: 2021-04-21
    Description: Ventilation is the primary pathway for atmosphere–ocean boundary perturbations, such as temperature anomalies, to be relayed to the ocean interior. It is also a conduit for gas exchange between the interface of atmosphere and ocean. Thus it is a mechanism whereby, for instance, the ocean interior is oxygenated and enriched in anthropogenic carbon. The ventilation of the Mediterranean Sea is fast in comparison to the world ocean and has large temporal variability. Here we present transient tracer data from a field campaign in April 2011 that sampled a unique suite of transient tracers (SF6, CFC-12, 3H and 3He) in all major basins of the Mediterranean. We apply the transit time distribution (TTD) model to the data in order to constrain the mean age, the ratio of the advective / diffusive transport and the number of water masses significant for ventilation. We found that the eastern part of the eastern Mediterranean can be reasonably described with a one-dimensional inverse Gaussian TTD (IG-TTD), and thus constrained with two independent tracers. The ventilation of the Ionian Sea and the western Mediterranean can only be constrained by a linear combination of IG-TTDs. We approximate the ventilation with a one-dimensional, two inverse Gaussian TTD (2IG-TTD) for these areas and demonstrate a possibility of constraining a 2IG-TTD from the available transient tracer data. The deep water in the Ionian Sea has a mean age between 120 and 160 years and is therefore substantially older than the mean age of the Levantine Basin deep water (60–80 years). These results are in contrast to those expected by the higher transient tracer concentrations in the Ionian Sea deep water. This is partly due to deep water of Adriatic origin having more diffusive properties in transport and formation (i.e., a high ratio of diffusion over advection), compared to the deep water of Aegean Sea origin that still dominates the deep Levantine Basin deep water after the Eastern Mediterranean Transient (EMT) in the early 1990s. The tracer minimum zone (TMZ) in the intermediate of the Levantine Basin is the oldest water mass with a mean age up to 290 years. We also show that the deep western Mediterranean has contributed approximately 40% of recently ventilated deep water from the Western Mediterranean Transition (WMT) event of the mid-2000s. The deep water has higher transient tracer concentrations than the mid-depth water, but the mean age is similar with values between 180 and 220 years.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2021-04-21
    Description: This paper is the outcome of a workshop held in Rome in November 2011 on the occasion of the 25th anniversary of the POEM (Physical Oceanography of the Eastern Mediterranean) program. In the workshop discussions, a number of unresolved issues were identified for the physical and biogeochemical properties of the Mediterranean Sea as a whole, i.e., comprising the Western and Eastern sub-basins. Over the successive two years, the related ideas were discussed among the group of scientists who participated in the workshop and who have contributed to the writing of this paper. Three major topics were identified, each of them being the object of a section divided into a number of different sub-sections, each addressing a specific physical, chemical or biological issue: 1. Assessment of basin-wide physical/biochemical properties, of their variability and interactions. 2. Relative importance of external forcing functions (wind stress, heat/moisture fluxes, forcing through straits) vs. internal variability. 3. Shelf/deep sea interactions and exchanges of physical/biogeochemical properties and how they affect the sub-basin circulation and property distribution. Furthermore, a number of unresolved scientific/methodological issues were also identified and are reported in each sub-section after a short discussion of the present knowledge. They represent the collegial consensus of the scientists contributing to the paper. Naturally, the unresolved issues presented here constitute the choice of the authors and therefore they may not be exhaustive and/or complete. The overall goal is to stimulate a broader interdisciplinary discussion among the scientists of the Mediterranean oceanographic community, leading to enhanced collaborative efforts and exciting future discoveries.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    facet.materialart.
    Unknown
    Elsevier
    In:  Deep Sea Research Part I: Oceanographic Research Papers, 67 . pp. 85-97.
    Publication Date: 2019-09-23
    Description: The transit time distribution method was applied to dichlorodifluoromethane and sulfur hexafluoride measurements from four cruises to the tropical North Atlantic between 2006 and 2009 in order to estimate anthropogenic carbon (C-ant) concentrations. By assuming an Inverse Gaussian distribution of the transit time distribution the best fit to the data was achieved with the ratio of mean age to width equals 1. Significant differences in the mean age and C-ant concentrations between the equatorial belt (5 degrees S-5 degrees N) and the Guinea dome area (5 degrees-15 degrees N) was found. Mean ages are higher and C-ant concentrations are lower in the Guinea dome area than at same depths, or densities, in the equatorial belt. The mean column inventories in the upper 1200 m are higher by about 3 mol m(-2) in the equatorial belt compared to the Guinea dome area. The mean column inventory of C-ant, for the whole water column, in the tropical Atlantic is 32.2 mol m(-2) (error range: 30.6-45.2 mol m(-2)), which is significantly lower than the previous estimates. The total C-ant inventory in the eastern tropical Atlantic is 2.5 Pg (error range: 2.3-3.5 Pg) for an area of 6 x 10(6) km(2), comprising the Guinea dome region and the equatorial belt. The equatorial belt has 40% higher storage of C-ant compared to the Guinea dome area which reflects the occurrence of relatively young deep waters at the equator, being high in anthropogenic carbon. Our tracer based C-ant estimates were compared to C-ant concentrations calculated with the TrOCA method applied to measurements conducted in 1999. The TrOCA based estimates are significantly higher than our tracer based C-ant estimates. Comparison between tracer measurements in 1999 and the 2006-2009 time-frame revealed possible speed-up of ventilation in the upper water column, increasing the C-ant concentration in this depth range at a faster rate and a C-ant increase of 12.1 mu mol kg(-1) in the tropical surface water was found
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    facet.materialart.
    Unknown
    Copernicus Publications (EGU)
    In:  Biogeosciences (BG), 9 . pp. 4819-4833.
    Publication Date: 2015-01-12
    Description: Increasing concentrations of dissolved inorganic carbon (DIC) in the interior ocean is expected as a direct consequence of increasing concentrations of CO2 in the atmosphere. This extra DIC is often referred to as anthropogenic carbon (Cant), and its inventory, or increase rate, in the interior ocean has previously been estimated by a multitude of observational approaches. Each of these methods are associated with hard to test assumptions since Cant cannot be directly observed. Results from a simpler concept with few assumptions applied to the Atlantic Ocean are reported on here using two large data collections of carbon relevant bottle data. The change in column inventory on decadal time scales, i.e. the storage rate, of DIC, respiration compensated DIC and oxygen is calculated for the Atlantic Ocean. The average storage rates for DIC and oxygen is calculated to 0.72 ± 1.22 (95% confidence interval of the mean trend: 0.65–0.78) mol m−2 yr−1 and −0.54 ± 1.64 (95% confidence interval of the mean trend: –0.64–(−0.45)) mol m−2 yr−1, respectively, for the Atlantic Ocean, where the uncertainties reflect station-to-station variability and where the mean trends are non-zero at the 95% confidence level. The standard deviation mainly reflects uncertainty due to regional variations, whereas the confidence interval reflects the mean trend. The storage rates are similar to changes found by other studies, although with large uncertainty. For the subpolar North Atlantic the storage rates show significant temporal variation of all variables. This seems to be due to variations in the prevalence of subsurface water masses with different DIC concentrations leading to sometimes different signs of storage rates for DIC and Cant. This study suggest that accurate assessment of the uptake of CO2 by the oceans will require accounting not only for processes that influence Cant but also additional processes that modify CO2 storage.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...