GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2021-04-23
    Description: Our study followed the seasonal cycling of soluble (SFe), colloidal (CFe), dissolved (DFe), total dissolvable (TDFe), labile particulate (LPFe) and total particulate (TPFe) iron in the Celtic Sea (NE Atlantic Ocean). Preferential uptake of SFe occurred during the spring bloom, preceding the removal of CFe. Uptake and export of Fe during the spring bloom, coupled with a reduction in vertical exchange, led to Fe deplete surface waters (〈0.2 nM DFe; 0.11 nM LPFe, 0.45 nM TDFe, 1.84 nM TPFe) during summer stratification. Below the seasonal thermocline, DFe concentrations increased from spring to autumn, mirroring NO3- and consistent with supply from remineralised sinking organic material, and cycled independently of particulate Fe over seasonal timescales. These results demonstrate that summer Fe availability is comparable to the seasonally Fe limited Ross Sea shelf, and therefore is likely low enough to affect phytoplankton growth and species composition.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2021-04-23
    Description: Highlights • Pb concentrations and isotope ratios presented for GEOTRACES section GA06. • Northern and southern hemisphere water masses have distinct Pb isotope ratios. • Pb isotope ratios consistent with ventilation timescales of northern water masses. • Mixing complicates interpretation of Pb distributions in southern water masses. Abstract Anthropogenic emissions have dominated marine Pb sources during the past century. Here we present Pb concentrations and isotope compositions for ocean depth profiles collected in the eastern Tropical Atlantic Ocean (GEOTRACES section GA06), to trace the transfer of anthropogenic Pb into the ocean interior. Variations in Pb concentration and isotope composition were associated with changes in hydrography. Water masses ventilated in the southern hemisphere generally featured lower 206Pb/207Pb and 208Pb/207Pb ratios than those ventilated in the northern hemisphere, in accordance with Pb isotope data of historic anthropogenic Pb emissions. The distributions of Pb concentrations and isotope compositions in northern sourced waters were consistent with differences in their ventilation timescales. For example, a Pb concentration maximum at intermediate depth (600–900 m, 35 pmol kg−1) in waters sourced from the Irminger/Labrador Seas, is associated with Pb isotope compositions (206Pb/207Pb = 1.1818–1.1824, 208Pb/207Pb = 2.4472–2.4483) indicative of northern hemispheric emissions during the 1950s and 1960s close to peak leaded petrol usage, and a transit time of ∼50–60 years. In contrast, North Atlantic Deep Water (2000–4000 m water depth) featured lower Pb concentrations and isotope compositions (206Pb/207Pb = 1.1762–1.184, 208Pb/207Pb = 2.4482–2.4545) indicative of northern hemispheric emissions during the 1910s and 1930s and a transit time of ∼80–100 years. This supports the notion that transient anthropogenic Pb inputs are predominantly transferred into the ocean interior by water mass transport. However, the interpretation of Pb concentration and isotope composition distributions in terms of ventilation timescales and pathways is complicated by (1) the chemical reactivity of Pb in the ocean, and (2) mixing of waters ventilated during different time periods. The complex effects of water mass mixing on Pb distributions is particularly apparent in seawater in the Tropical Atlantic Ocean which is ventilated from the southern hemisphere. In particular, South Atlantic Central Water and Antarctic Intermediate Water were dominated by anthropogenic Pb emitted during the last 50–100 years, despite estimates of much older average ventilation ages in this region.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Format: other
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2021-02-08
    Description: The GEOTRACES Intermediate Data Product 2017 (IDP2017) is the second publicly available data product of the international GEOTRACES programme, and contains data measured and quality controlled before the end of 2016. The IDP2017 includes data from the Atlantic, Pacific, Arctic, Southern and Indian oceans, with about twice the data volume of the previous IDP2014. For the first time, the IDP2017 contains data for a large suite of biogeochemical parameters as well as aerosol and rain data characterising atmospheric trace element and isotope (TEI) sources. The TEI data in the IDP2017 are quality controlled by careful assessment of intercalibration results and multi-laboratory data comparisons at crossover stations. The IDP2017 consists of two parts: (1) a compilation of digital data for more than 450 TEIs as well as standard hydrographic parameters, and (2) the eGEOTRACES Electronic Atlas providing an on-line atlas that includes more than 590 section plots and 130 animated 3D scenes. The digital data are provided in several formats, including ASCII, Excel spreadsheet, netCDF, and Ocean Data View collection. Users can download the full data packages or make their own custom selections with a new on-line data extraction service. In addition to the actual data values, the IDP2017 also contains data quality flags and 1-σ data error values where available. Quality flags and error values are useful for data filtering and for statistical analysis. Metadata about data originators, analytical methods and original publications related to the data are linked in an easily accessible way. The eGEOTRACES Electronic Atlas is the visual representation of the IDP2017 as section plots and rotating 3D scenes. The basin-wide 3D scenes combine data from many cruises and provide quick overviews of large-scale tracer distributions. These 3D scenes provide geographical and bathymetric context that is crucial for the interpretation and assessment of tracer plumes near ocean margins or along ridges. The IDP2017 is the result of a truly international effort involving 326 researchers from 22 countries. This publication provides the critical reference for unpublished data, as well as for studies that make use of a large cross-section of data from the IDP2017.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2021-04-23
    Description: Copper (Cu) is both an essential micronutrient and toxic to photosynthesizing microorganisms at low concentrations. Its dissolved vertical distribution in the oceans is unusual, being neither a nutrient-type nor scavenged-type element. This distribution is attributed to biological uptake in the surface ocean with remineralisation at depth, combined with strong organic complexation by dissolved ligands, scavenging onto particles, and benthic sedimentary input. We present coupled dissolved and particulate phase Cu isotope data along the UK-GEOTRACES South Atlantic section, alongside higher resolution dissolved and particulate phase Cu concentration measurements. Our dissolved phase isotope data contribute to an emerging picture of homogeneous deep ocean δ65Cu, at about +0.65‰ (relative to NIST SRM 976). We identify two pools of Cu in the particulate phase: a refractory, lithogenic pool, at about 0‰, and a labile pool accessed via a weak acidic leach, at about +0.4‰. These two pools are comparable to those previously observed in sediments. We observe deviations towards lighter δ65Cu values in the dissolved phase associated with local enrichments in particulate Cu concentrations along the continental slopes, and in the surface ocean. Copper isotopes are thus a sensitive indicator of localised particle-associated benthic or estuarine Cu inputs. The measurement of Cu isotopes in seawater is analytically challenging, and we call for an intercalibration exercise to better evaluate the potential impacts of UV-irradiation, storage time, and different analytical procedures.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2021-04-23
    Description: Anthropogenic emissions completely overwhelmed natural marine lead (Pb) sources during the past century, predominantly due to leaded petrol usage. Here, based on Pb isotope measurements, we reassess the importance of natural and anthropogenic Pb sources to the tropical North Atlantic following the nearly complete global cessation of leaded petrol use. Significant proportions of up to 30–50% of natural Pb, derived from mineral dust, are observed in Atlantic surface waters, reflecting the success of the global effort to reduce anthropogenic Pb emissions. The observation of mineral dust derived Pb in surface waters is governed by the elevated atmospheric mineral dust concentration of the North African dust plume and the dominance of dry deposition for the atmospheric aerosol flux to surface waters. Given these specific regional conditions, emissions from anthropogenic activities will remain the dominant global marine Pb source, even in the absence of leaded petrol combustion.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2020-06-26
    Description: Highlights: • GEOTRACES releases its first integrated and quality controlled Intermediate Data Product 2014 (IDP2014). • The IDP2014 digital data are available at http://www.bodc.ac.uk/geotraces/data/idp2014/ in 4 different formats. • The eGEOTRACES Electronic Atlas at http://egeotraces.org/ provides 329 section plots and 90 animated 3D tracer scenes. • The new 3D scenes provide geographical and bathymetric context crucial for tracer assessment and interpretation. Abstract: The GEOTRACES Intermediate Data Product 2014 (IDP2014) is the first publicly available data product of the international GEOTRACES programme, and contains data measured and quality controlled before the end of 2013. It consists of two parts: (1) a compilation of digital data for more than 200 trace elements and isotopes (TEIs) as well as classical hydrographic parameters, and (2) the eGEOTRACES Electronic Atlas providing a strongly inter-linked on-line atlas including more than 300 section plots and 90 animated 3D scenes. The IDP2014 covers the Atlantic, Arctic, and Indian oceans, exhibiting highest data density in the Atlantic. The TEI data in the IDP2014 are quality controlled by careful assessment of intercalibration results and multi-laboratory data comparisons at cross-over stations. The digital data are provided in several formats, including ASCII spreadsheet, Excel spreadsheet, netCDF, and Ocean Data View collection. In addition to the actual data values the IDP2014 also contains data quality flags and 1-σ data error values where available. Quality flags and error values are useful for data filtering. Metadata about data originators, analytical methods and original publications related to the data are linked to the data in an easily accessible way. The eGEOTRACES Electronic Atlas is the visual representation of the IDP2014 data providing section plots and a new kind of animated 3D scenes. The basin-wide 3D scenes allow for viewing of data from many cruises at the same time, thereby providing quick overviews of large-scale tracer distributions. In addition, the 3D scenes provide geographical and bathymetric context that is crucial for the interpretation and assessment of observed tracer plumes, as well as for making inferences about controlling processes.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2021-04-26
    Description: Reference material for trace elements linked to the International GEOTRACES programme (GEOMAR and UOP), create genomic standards and organize their community analysis (Ribocon), and standardize DNA extraction and sequencing (Ribocon and AWI).
    Type: Report , NonPeerReviewed , info:eu-repo/semantics/book
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2021-04-23
    Description: The supply and bioavailability of iron (Fe) controls primary productivity and N2-fixation in large parts of the global ocean. An important, yet poorly quantified, source to the ocean is particulate Fe (pFe). Here we present the first combined dataset of particulate, labile-particulate (L-pFe) and dissolved Fe (dFe) from the (sub)-tropical North Atlantic. We show a strong relationship between L-pFe and dFe, indicating a dynamic equilibrium between these two phases whereby particles ‘buffer’ dFe and maintain the elevated concentrations observed. Moreover, L-pFe can increase the overall ‘available’ (L-pFe + dFe) Fe pool by up to 55%. The lateral shelf flux of this available Fe was similar in magnitude to observed soluble aerosol-Fe deposition, a comparison that has not been previously considered. These findings demonstrate that L-pFe is integral to Fe cycling and hence plays a role in regulating carbon cycling, warranting its’ inclusion in Fe budgets and biogeochemical models.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2020-06-12
    Description: Continental shelves and shelf seas play a central role in the global carbon cycle. However, their importance with respect to trace element and isotope (TEI) inputs to ocean basins is less well understood. Here, we present major findings on shelf TEI biogeochemistry from the GEOTRACES programme as well as a proof of concept for a new method to estimate shelf TEI fluxes. The case studies focus on advances in our understanding of TEI cycling in the Arctic, transformations within a major river estuary (Amazon), shelf sediment micronutrient fluxes and basin-scale estimates of submarine groundwater discharge. The proposed shelf flux tracer is 228-radium (T1/2 = 5.75 yr), which is continuously supplied to the shelf from coastal aquifers, sediment porewater exchange and rivers. Model-derived shelf 228Ra fluxes are combined with TEI/ 228Ra ratios to quantify ocean TEI fluxes from the western North Atlantic margin. The results from this new approach agree well with previous estimates for shelf Co, Fe, Mn and Zn inputs and exceed published estimates of atmospheric deposition by factors of approximately 3–23. Lastly, recommendations are made for additional GEOTRACES process studies and coastal margin-focused section cruises that will help refine the model and provide better insight on the mechanisms driving shelf-derived TEI fluxes to the ocean.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2022-01-31
    Description: A realistic estimation of uncertainty is an essential requirement for all analytical measurements. It is common practice, however, for the uncertainty estimate of a chemical measurement to be based on the instrumental precision associated with the analysis of a single or multiple samples, which can lead to underestimation. Within the context of chemical oceanography such an underestimation of uncertainty could lead to an over interpretation of the result(s) and hence impact on, e.g., studies of biogeochemical cycles, and the outputs from oceanographic models. Getting high quality observational data with a firm uncertainty assessment is therefore essential for proper model validation. This paper describes and compares two recommended approaches that can give a more holistic assessment of the uncertainty associated with such measurements, referred to here as the “bottom up” or modeling approach and the “top down” or empirical approach. “Best practice” recommendations for the implementation of these strategies are provided. The “bottom up” approach combines the standard uncertainties associated with each stage of the entire measurement procedure. The “top down” approach combines the uncertainties associated with day to day reproducibility and possible bias in the complete data set and is easy to use. For analytical methods that are routinely used, laboratories will have access to the information required to calculate the uncertainty from archived quality assurance data. The determination of trace elements in seawater is a significant analytical challenge and iron is used as an example for the implementation of both approaches using real oceanographic data. Relative expanded uncertainties of 10 – 20% were estimated for both approaches compared with a typical short term precision (rsd) of≤5%.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: other
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...