GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Data  (134)
  • OceanRep  (361)
Document type
Keywords
  • 1
    Publication Date: 2020-02-06
    Description: Anthropogenic emissions of carbon dioxide (CO2) and the ongoing accumulation in the surface ocean together with concomitantly decreasing pH and calcium carbonate saturation states have the potential to impact phytoplankton community composition and therefore biogeochemical element cycling on a global scale. Here we report on a recent mesocosm CO2 perturbation study (Raunefjorden, Norway), with a focus on organic matter and phytoplankton dynamics. Cell numbers of three phytoplankton groups were particularly affected by increasing levels of seawater CO2 throughout the entire experiment, with the cyanobacterium Synechococcus and picoeukaryotes (prasinophytes) profiting, and the coccolithophore Emiliania huxleyi (prymnesiophyte) being negatively impacted. Combining these results with other phytoplankton community CO2 experiments into a data-set of global coverage suggests that, whenever CO2 effects are found, prymnesiophyte (especially coccolithophore) abundances are negatively affected, while the opposite holds true for small picoeukaryotes belonging to the class of prasinophytes, or the division of chlorophytes in general. Future reductions in calcium carbonate-producing coccolithophores, providing ballast which accelerates the sinking of particulate organic matter, together with increases in picoeukaryotes, an important component of the microbial loop in the euphotic zone, have the potential to impact marine export production, with feedbacks to Earth's climate system.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2020-06-18
    Description: Transparent exopolymer particles (TEP) are a class of marine gel particles and important links between surface ocean biology and atmospheric processes. Derived from marine microorganisms, these particles can facilitate the biological pumping of carbon dioxide to the deep sea, or act as cloud condensation and ice nucleation particles in the atmosphere. Yet, environmental controls on TEP abundance in the ocean are poorly known. Here, we investigated some of these controls during the first multiyear time-series on TEP abundance for the Fram Strait, the Atlantic gateway to the Central Arctic Ocean. Data collected at the Long-Term Ecological Research observatory HAUSGARTEN during 2009 to 2014 indicate a strong biological control with highest abundance co-occurring with the prymnesiophyte Phaeocystis pouchetii. Higher occurrence of P. pouchetii in the Arctic Ocean has previously been related to northward advection of warmer Atlantic waters, which is expected to increase in the future. Our study highlights the role of plankton key species in driving climate relevant processes; thus, changes in plankton distribution need to be accounted for when estimating the ocean’s biogeochemical response to global change.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2021-04-23
    Description: In certain regions of the predominantly nitrogen limited ocean, microbes can become co-limited by phosphorus. Within such regions, a proportion of the dissolved organic phosphorus pool can be accessed by microbes employing a variety of alkaline phosphatase (APase) enzymes. In contrast to the PhoA family of APases that utilize zinc as a cofactor, the recent discovery of iron as a cofactor in the more widespread PhoX and PhoD implies the potential for a biochemically dependant interplay between oceanic zinc, iron and phosphorus cycles. Here we demonstrate enhanced natural community APase activity following iron amendment within the low zinc and moderately low iron Western North Atlantic. In contrast we find no evidence for trace metal limitation of APase activity beneath the Saharan dust plume in the Eastern Atlantic. Such intermittent iron limitation of microbial phosphorus acquisition provides an additional facet in the argument for iron controlling the coupling between oceanic nitrogen and phosphorus cycles.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2020-06-18
    Description: In marine oxygen (O2) minimum zones (OMZs), the transfer of particulate organic carbon (POC) to depth via the biological carbon pump might be enhanced as a result of slower remineralisation under lower dissolved O2 concentrations (DO). In parallel, nitrogen (N) loss to the atmosphere through microbial processes, such as denitrification and anammox, is directly linked to particulate nitrogen (PN) export. However it is unclear (1) whether DO is the only factor that potentially enhances POC transfer in OMZs, and (2) if particle fluxes are sufficient to support observed N loss rates. We performed a degradation experiment on sinking particles collected from the Baltic Sea, where anoxic zones are observed. Sinking material was harvested using surface-tethered sediment traps and subsequently incubated in darkness at different DO levels, including severe suboxia (〈0.5 mg l−1 DO). Our results show that DO plays a role in regulating POC and PN degradation rates. POC(PN) degradation was reduced by approximately 100% from the high to low DO to the lowest DO. The amount of NH4+ produced from the pool of remineralising organic N matched estimations of NH4+ anammox requirements during our experiment. This anammox was likely fueled by DON degradation rather than PON degradation.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2020-02-06
    Description: The sea surface microlayer (SML) is the thin boundary layer between the ocean and the atmosphere, making it important for air-sea exchange processes. However, little is known about what controls organic matter composition in the SML. In particular, there are only few studies available on the differences of the SML of various oceanic systems. Here, we compared the organic matter and neuston species composition in the SML and the underlying water (ULW) at 11 stations with varying distance from the coast in the Peruvian upwelling regime, a system with high emissions of climate relevant trace gases, such as N2O and CO2. In the open ocean, organic carbon, and amino acids were highly enriched in the SML compared to the ULW. The enrichment decreased at the coastal stations and vanished in the upwelling regime. At the same time, the degradation of organic matter increased from the open ocean to the upwelling stations. This suggests that in the open ocean, upward transport processes or new production of organic matter within the SML are faster than degradation processes. Phytoplankton was generally not enriched in the SML, one group though, the Trichodesmium-like TrL (possibly containing Trichodesmium), were enriched in the open ocean but not in the upwelling region indicating that they find a favorable habitat in the open ocean SML. Our data show that the SML is a distinct habitat; its composition is more similar among different systems than between SML and ULW of a single station. Generally the enrichment of organic matter is assumed to be reduced when encountering low primary production and high wind speeds. However, our study shows the highest enrichments of organic matter in the open ocean which had the lowest primary production and the highest wind speeds.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    Royal Society of London
    In:  Proceedings of the Royal Society B: Biological Sciences, 285 (1885). p. 20181203.
    Publication Date: 2021-03-19
    Description: Ocean plastic pollution has resulted in a substantial accumulation of microplastics in the marine environment. Today, this plastic litter is ubiquitous in the oceans, including even remote habitats such as deep-sea sediments and polar sea ice, and it is believed to pose a threat to ecosystem health. However, the concentration of microplastics in the surface layer of the oceans is considerably lower than expected, given the ongoing replenishment of microplastics and the tendency of many plastic types to float. It has been hypothesized that microplastics leave the upper ocean by aggregation and subsequent sedimentation. We tested this hypothesis by investigating the interactions of microplastics with marine biogenic particles collected in the southwestern Baltic Sea. Our laboratory experiments revealed a large potential of microplastics to rapidly coagulate with biogenic particles, which substantiates this hypothesis. Together with the biogenic particles, the microplastics efficiently formed pronounced aggregates within a few days. The aggregation of microplastics and biogenic particles was significantly accelerated by microbial biofilms that had formed on the plastic surfaces. We assume that the demonstrated aggregation behaviour facilitates the export of microplastics from the surface layer of the oceans and plays an important role in the redistribution of microplastics in the oceans.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2021-02-08
    Description: Climate models project that the Arctic Ocean may experience ice-free summers by the second half of this century. This may have severe repercussions on phytoplankton bloom dynamics and the associated cycling of carbon in surface waters. We currently lack baseline knowledge of the seasonal dynamics of Arctic microbial communities, which is needed in order to better estimate the effects of such changes on ecosystem functioning. Here we present a comparative study of polar summer microbial communities in the ice-free (eastern) and ice-covered (western) hydrographic regimes at the LTER HAUSGARTEN in Fram Strait, the main gateway between the Arctic and North Atlantic Oceans. Based on measured and modeled biogeochemical parameters, we tentatively identified two different ecosystem states (i.e., different phytoplankton bloom stages) in the distinct regions. Using Illumina tag-sequencing, we determined the community composition of both free-living and particle-associated bacteria as well as microbial eukaryotes in the photic layer. Despite substantial horizontal mixing by eddies in Fram Strait, pelagic microbial communities showed distinct differences between the two regimes, with a proposed early spring (pre-bloom) community in the ice-covered western regime (with higher representation of SAR11, SAR202, SAR406 and eukaryotic MALVs) and a community indicative of late summer conditions (post-bloom) in the ice-free eastern regime (with higher representation of Flavobacteria, Gammaproteobacteria and eukaryotic heterotrophs). Co-occurrence networks revealed specific taxon-taxon associations between bacterial and eukaryotic taxa in the two regions. Our results suggest that the predicted changes in sea ice cover and phytoplankton bloom dynamics will have a strong impact on bacterial community dynamics and potentially on biogeochemical cycles in this region.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2020-02-06
    Description: Gel particles—a class of abundant transparent organic particles—have increasingly gathered attention in marine research. Field studies on the bacterial colonization of marine gels however are still scarce. So far, most studies on respective particles have focused on the upper ocean, while little is known on their occurrence in the deep sea. Here, we report on the vertical distribution of the two most common gel particle types, which are polysaccharide-containing transparent exopolymer particles (TEP) and proteinaceous Coomassie stainable particles (CSP), as well as numbers of bacteria attached to gel particles throughout the water column, from the surface ocean down to the bathypelagial (〈 3,000 m). Our study was conducted in the Arctic Fram Strait during northern hemispheres' summer in 2015. Besides data on the bacterial colonization of the two gel particle types (TEP and CSP), we present bacterial densities on different gel particle size classes according to 12 different sampling depths at four sampling locations. Gel particles were frequently abundant at all sampled depths, and their concentrations decreased from the euphotic zone to the dark ocean. They were colonized by bacteria at all sampled water depths with risen importance at the deepest water layers, where fractions of bacteria attached to gel particles (%) increased within the total bacterial community. Due to the omnipresent bacterial colonization of gel particles at all sampled depths in our study, we presume that euphotic production of this type of organic matter may affect microbial species distribution within the whole water column in the Fram Strait, down to the deep sea. Our results raise the question if changes in the bacterial community composition and functioning on gel particles occur over depth, which may affect microbial respiration and remineralization rates of respective particles in different water layers.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2021-02-08
    Description: The surface microlayer (SML) in marine systems is often characterized by an enrichment of biogenic, gel-like particles, such as the polysaccharide-containing transparent exopolymer particles (TEP) and the protein-containing Coomassie stainable particles (CSP). This study investigated the distribution of TEP and CSP, in the SML and underlying water, as well as their bio-physical controlling factors in Daya Bay, an area impacted by warm discharge from two Nuclear power plants (Npp’s) and aquaculture during a research cruise in July 2014. The SML had higher proportions of cyanobacteria and of pico-size Chl a contrast to the underlayer water, particularly at the nearest outlet station characterized by higher temperature. Diatoms, dinoflagellates and chlorophyll a were depleted in the SML. Both CSP and TEP abundance and total area were enriched in the SML relative to the underlying water, with enrichment factors (EFs) of 1.5–3.4 for CSP numbers and 1.32–3.2 for TEP numbers. Although TEP and CSP showed highest concentration in the region where high productivity and high nutrient concertation were observed, EFs of gels and of dissolved organic carbon (DOC) and dissolved acidic polysaccharide (〉 1 kDa), exhibited higher values near the outlet of the Npp’s than in the adjacent waters. The positive relation between EF’s of gels and temperature and the enrichment of cyanobacteria in the SML may be indicative of future conditions in a warmer ocean, suggesting potential effects on adjusting phytoplankton community, biogenic element cycling and air-sea exchange processes
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2021-03-18
    Description: The surface microlayer (SML) is the uppermost thin layer of the ocean and influencing interactions between the air and sea, such as gas exchange, atmospheric deposition and aerosol emission. Organic matter (OM) plays a key role in air-sea exchange processes, but studying how the accumulation of organic compounds in the SML relates to biological processes is impeded in the field by a changing physical environment, in particular wind speed and wave breaking. Here, we studied OM dynamics in the SML under controlled physical conditions in a large annular wind wave channel, filled with natural seawater, over a period of 26 days. Biology in both SML and bulk water was dominated by bacterioneuston and -plankton, respectively, while autotrophic biomass in the two compartments was very low. In general, SML thickness was related to the concentration of dissolved organic carbon (DOC) but not to enrichment of DOC or of specific OM components in the SML. Pronounced changes in OM enrichment and molecular composition were observed in the course of the study and correlated significantly to bacterial abundance. Thereby, hydrolysable amino acids, in particular arginine, were more enriched in the SML than combined carbohydrates. Amino acid composition indicated that less degraded OM accumulated preferentially in the SML. A strong correlation was established between the amount of surfactants coverage and γ-aminobutric acid, suggesting that microbial cycling of amino acids can control physiochemical traits of the SML. Our study shows that accumulation and cycling of OM in the SML can occur independently of recent autotrophic production, indicating a widespread biogenic control of process across the air-sea exchange.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...