GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Keywords: Tiefseesediment ; Biogeochemie
    Type of Medium: Book
    Pages: 130 S. , Ill., graph. Darst., Kt.
    Edition: 2. ed., repr.
    ISBN: 9780750667937
    Series Statement: Oceanography series 5
    RVK:
    RVK:
    Language: English
    Note: Literaturangaben , Früher u.d.T.: Ocean chemistry and deep-sea sediments
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Paleoceanography, Hoboken, NJ : Wiley, 1986, 24(2009), 1944-9186
    In: volume:24
    In: year:2009
    In: extent:14
    Description / Table of Contents: The intratest variation in the chemical composition of Globorotalia scitula and G. inflata recovered from a sediment trap sample collected at 3000 m in the North Atlantic in early spring has been investigated using laser ablation inductively coupled plasmamass spectrometry and electron microprobe. Mg/Ca, Li/Ca, B/Ca, Mn/Ca, and Ba/Ca vary by up to a factor of 10 through the test walls. Water column properties, including temperature and salinity, are well documented at the trap site, and the observed variations are too large to be explained by vertical migration of the foraminifera. However, changes in calcite precipitation rate, crystal structure, or the chemical composition of the internal calcification reservoir also cannot, by themselves, fully account for the pattern of intratest variability. Nevertheless, the average Mg/Ca for each chamber generally produces a Mg/Ca temperature that matches that measured in the water column. The exception is small, morphologically distinct G. inflata tests that have anomalously high Mg/Ca.
    Type of Medium: Online Resource
    Pages: 14 , Ill., graph. Darst
    ISSN: 1944-9186
    Language: English
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Keywords: Biogeochemical cycles ; Chemical oceanography ; Marine sediments ; Tiefseesediment ; Biogeochemie
    Type of Medium: Book
    Pages: 130 S. , Ill., graph. Darst., Kt.
    Edition: 2. ed.
    ISBN: 0750667931 , 9780750667937
    Series Statement: Oceanography series 5
    RVK:
    RVK:
    Language: English
    Note: Literaturangaben , Früher u.d.T.: Ocean chemistry and deep-sea sediments
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Keywords: Tiefseesediment ; Biogeochemie
    Type of Medium: Book
    Pages: 130 S , Ill., graph. Darst., Kt.
    Edition: 2. ed., repr.
    ISBN: 9780750667937
    Series Statement: Oceanography series 5
    RVK:
    RVK:
    Language: English
    Note: Literaturangaben , Früher u.d.T.: Ocean chemistry and deep-sea sediments
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2021-04-23
    Description: Constraints on the variability of chromium (Cr) isotopic compositions in the modern ocean are required to validate the use of Cr isotopic signatures in ancient authigenic marine sediments for reconstructing past levels of atmospheric and ocean oxygenation. This study presents dissolved Cr concentrations (Cr-T, where Cr-T = Cr(VI) + Cr(III)) and Cr isotope data (delta Cr-53) for shelf, slope and open ocean waters within the oxygen minimum zone (OMZ) of the eastern sub-tropical Atlantic Ocean. Although dissolved oxygen concentrations were as low as 44-90 mu mol kg(-1) in the core of the OMZ, there was no evidence for removal of Cr(VI). Nonetheless, there was significant variability in seawater delta Cr-53, with values ranging from 1.08 to 1.72 parts per thousand. Shelf Cr-T concentrations were slightly lower (2.21 +/- 0.07 nmol kg(-1)) than in open ocean waters at the same water depth (between 0 and 160 m, 2.48 +/- 0.07 nmol kg(-1)). The shelf waters also had higher delta Cr-53 values (1.41 +/- 0.14 parts per thousand compared to 1.18 +/- 0.05 parts per thousand for open ocean waters shallower than 160 m). This is consistent with partial reduction of Cr(VI) to Cr(III), with subsequent removal of isotopically light Cr(III) onto biogenic particles. We also provide evidence for input of relatively isotopically heavy Cr from sediments on the shelf. Intermediate and deep water masses (AAIW and NADW) show a rather limited range of delta Cr-53 values (1.19 +/- 0.09 parts per thousand) and inputs of Cr from remineralisation of organic material or re-oxidation of Cr (III) appear to be minimal. Authigenic marine precipitates deposited in deep water in the open ocean therefore have the potential to faithfully record seawater delta Cr-53, whereas archives of seawater delta Cr-53 derived from shelf sediments must be interpreted with caution.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2017-12-07
    Description: Hydrocarbon-rich fluids expelled at mud volcanoes (MVs) may contribute significantly to the carbon budget of the oceans, but little is known about the long-term variation in fluid fluxes at MVs. The Darwin MV is one of more than 40 MVs located in the Gulf of Cadiz, but it is unique in that its summit is covered by a thick carbonate crust that has the potential to provide a temporal record of seepage activity. In order to test this idea, we have conducted petrographic, chemical and isotopic analyses of the carbonate crust. In addition a 1-D transport-reaction model was applied to pore fluid data to assess fluid flow and carbonate precipitation at present. The carbonate crusts mainly comprise of aragonite, with a chaotic fabric exhibiting different generations of cementation and brecciation. The crusts consist of bioclasts and lithoclasts (peloids, intraclasts and extraclasts) immersed in a micrite matrix and in a variety of cement types (microsparite, botryoidal, isopachous acicular, radial and splayed fibrous). The carbonates are moderately depleted in 13C (δ13C = − 8.1 to − 27.9‰) as are the pore fluids (δ13C = − 19.1 to − 28.7‰), which suggests that their carbon originated from the oxidation of methane and higher hydrocarbons, like the gases that seep from the MV today. The carbonate δ18O values are as high as 5.1‰, and it is most likely that the crusts formed from 18O-rich fluids derived from dehydration of clay minerals at depth. Pore fluid modelling results indicate that the Darwin MV is currently in a nearly dormant phase (seepage velocities are 〈 0.09 cm yr− 1). Thus, the thick carbonate crust must have formed during past episodes of high fluid flow, alternating with phases of mud extrusion and uplift. Highlights ► Results of pore fluid modelling indicate low seepage activity at localised sites. ► Pore fluids are supersaturated with respect to hydrocarbons of thermogenic origin. ► AOM supports vent fauna and results in the formation of authigenic carbonates. ► The carbonate crust has a brecciated appearance and mainly consists of aragonite. ► The crust formation seems to be regulated by changes in fluid and mudflow activity.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2017-06-19
    Description: The East Scotia subduction zone, located in the Atlantic sector of the Southern Ocean, hosts a number of hydrothermal sites in both back-arc and island-arc settings. High temperature (〉348 °C) ‘black smoker’ vents have been sampled at three locations along segments E2 and E9 of the East Scotia back-arc spreading ridge, as well as ‘white smoker’ (〈212 °C) and diffuse (〈28 °C) hydrothermal fluids from within the caldera of the Kemp submarine volcano. The composition of the endmember fluids (Mg = 0 mmol/kg) is markedly different, with pH ranging from 〈1 to 3.4, [Cl−] from ∼90 to 536 mM, [H2S] from 6.7 to ∼200 mM and [F−] from 35 to ∼1000 μM. All of the vent sites are basalt- to basaltic andesite-hosted, providing an ideal opportunity for investigating the geochemical controls on rare earth element (REE) behaviour. Endmember hydrothermal fluids from E2 and E9 have total REE concentrations ranging from 7.3 to 123 nmol/kg, and chondrite-normalised distribution patterns are either light REE-enriched (LaCN/YbCN = 12.8–30.0) with a positive europium anomaly (EuCN/Eu∗CN = 3.45–59.5), or mid REE-enriched (LaCN/NdCN = 0.61) with a negative Eu anomaly (EuCN/Eu∗CN = 0.59). By contrast, fluids from the Kemp Caldera have almost flat REE patterns (LaCN/YbCN = 2.1–2.2; EuCN/Eu∗CN = 1.2–2.2). We demonstrate that the REE geochemistry of fluids from the East Scotia back-arc spreading ridge is variably influenced by ion exchange with host minerals, phase separation, competitive complexation with ligands, and anhydrite deposition, whereas fluids from the Kemp submarine volcano are also affected by the injection of magmatic volatiles which enhances the solubility of all the REEs. We also show that the REE patterns of anhydrite deposits from Kemp differ from those of the present-day fluids, potentially providing critical information about the nature of hydrothermal activity in the past, where access to hydrothermal fluids is precluded.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-02-28
    Type: Report , NonPeerReviewed , info:eu-repo/semantics/book
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2017-05-02
    Description: Widespread seepage of methane from seafloor sediments offshore Svalbard close to the landward limit of the gas hydrate stability zone (GHSZ) may, in part, be driven by hydrate destabilization due to bottom water warming. To assess whether this methane reaches the atmosphere where it may contribute to further warming, we have undertaken comprehensive surveys of methane in seawater and air on the upper slope and shelf region. Near the GHSZ limit at ∼400 m water depth, methane concentrations are highest close to the seabed, reaching 825 nM. A simple box model of dissolved methane removal from bottom waters by horizontal and vertical mixing and microbially mediated oxidation indicates that ∼60% of methane released at the seafloor is oxidized at depth before it mixes with overlying surface waters. Deep waters are therefore not a significant source of methane to intermediate and surface waters; rather, relatively high methane concentrations in these waters (up to 50 nM) are attributed to isopycnal turbulent mixing with shelf waters. On the shelf, extensive seafloor seepage at 〈100 m water depth produces methane concentrations of up to 615 nM. The diffusive flux of methane from sea to air in the vicinity of the landward limit of the GHSZ is ∼4-20 μmol m-2 d-1, which is small relative to other Arctic sources. In support of this, analyses of mole fractions and the carbon isotope signature of atmospheric methane above the seeps do not indicate a significant local contribution from the seafloor source.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-09-24
    Description: Large quantities of methane are stored in hydrates and permafrost within shallow marine sediments in the Arctic Ocean. These reservoirs are highly sensitive to climate warming, but the fate of methane released from sediments is uncertain. Here, we review the principal physical and biogeochemical processes that regulate methane fluxes across the seabed, the fate of this methane in the water column, and potential for its release to the atmosphere. We find that, at present, fluxes of dissolved methane are significantly moderated by anaerobic and aerobic oxidation of methane. If methane fluxes increase then a greater proportion of methane will be transported by advection or in the gas phase, which reduces the efficiency of the methanotrophic sink. Higher freshwater discharge to Arctic shelf seas may increase stratification and inhibit transfer of methane gas to surface waters, although there is some evidence that increased stratification may lead to warming of sub-pycnocline waters, increasing the potential for hydrate dissociation. Loss of sea-ice is likely to increase wind speeds and seaair exchange of methane will consequently increase. Studies of the distribution and cycling of methane beneath and within sea ice are limited, but it seems likely that the sea-air methane flux is higher during melting in seasonally ice-covered regions. Our review reveals that increased observations around especially the anaerobic and aerobic oxidation of methane, bubble transport, and the effects of ice cover, are required to fully understand the linkages and feedback pathways between climate warming and release of methane from marine sediments.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...