GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    facet.materialart.
    Unknown
    Springer
    In:  In: Oceanographic and Biological Aspects of the Red Sea. , ed. by Rasul, N. M. A. and Stewart, I. C. F. Springer, Cham, Switzerland, pp. 401-418. ISBN 978-3-319-99416-1
    Publication Date: 2018-12-14
    Description: Coral reefs in the Red Sea belong to the most diverse and productive reef ecosystems worldwide, although they are exposed to strong seasonal variability, high temperature, and high salinity. These factors are considered stressful for coral reef biota and challenge reef growth in other oceans, but coral reefs in the Red Sea thrive despite these challenges. In the central Red Sea high temperatures, high salinities, and low dissolved oxygen on the one hand reflect conditions that are predicted for ‘future oceans’ under global warming. On the other hand, alkalinity and other carbonate chemistry parameters are considered favourable for coral growth. In coral reefs of the central Red Sea, temperature and salinity follow a seasonal cycle, while chlorophyll and inorganic nutrients mostly vary spatially, and dissolved oxygen and pH fluctuate on the scale of hours to days. Within these strong environmental gradients micro- and macroscopic reef communities are dynamic and demonstrate plasticity and acclimatisation potential. Epilithic biofilm communities of bacteria and algae, crucial for the recruitment of reef-builders, undergo seasonal community shifts that are mainly driven by changes in temperature, salinity, and dissolved oxygen. These variables are predicted to change with the progression of global environmental change and suggest an immediate effect of climate change on the microbial community composition of biofilms. Corals are so-called holobionts and associate with a variety of microbial organisms that fulfill important functions in coral health and productivity. For instance, coral-associated bacterial communities are more specific and less diverse than those of marine biofilms, and in many coral species in the central Red Sea they are dominated by bacteria from the genus Endozoicomonas. Generally, coral microbiomes align with ecological differences between reef sites. They are similar at sites where these corals are abundant and successful. Coral microbiomes reveal a measurable footprint of anthropogenic influence at polluted sites. Coral-associated communities of endosymbiotic dinoflagellates in central Red Sea corals are dominated by Symbiodinium from clade C. Some corals harbour the same specific symbiont with a high physiological plasticity throughout their distribution range, while others maintain a more flexible association with varying symbionts of high physiological specificity over depths, seasons, or reef locations. The coral-Symbiodinium endosymbiosis drives calcification of the coral skeleton, which is a key process that provides maintenance and formation of the reef framework. Calcification rates and reef growth are not higher than in other coral reef regions, despite the beneficial carbonate chemistry in the central Red Sea. This may be related to the comparatively high temperatures, as indicated by reduced summer calcification and long-term slowing of growth rates that correlate with ocean warming trends. Indeed, thermal limits of abundant coral species in the central Red Sea may have been exceeded, as evidenced by repeated mass bleaching events during previous years. Recent comprehensive baseline data from central Red Sea reefs allow for insight into coral reef functioning and for quantification of the impacts of environmental change in the region.
    Type: Book chapter , NonPeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-25
    Description: © The Author(s), 2013. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Conservation Genetics Resources 5 (2013): 561-563, doi:10.1007/s12686-012-9852-x.
    Description: A total of one hundred microsatellites loci were selected from the draft genome of Stylophora pistillata and evaluated in previously characterized samples of Stylophora cf pistillata from the Red Sea. 17 loci were amplified successfully and tested in 24 individuals from samples belonging to a single population from the central region of the Red Sea. The number of alleles ranged from 3 to 15 alleles per locus, while observed heterozygosity ranged from 0.292 to 0.95. Six of these loci showed significant deviations from Hardy–Weinberg equilibrium (HWE) expectations, and 4/136 paired loci comparisons suggested linkage disequilibrium after Bonferroni corrections. After excluding loci with significant HWE deviation and evidence of null alleles, average genetic diversity over loci in the population studied (N = 24, Nloci = 11) was 0.701 ± 0.380. This indicates that these loci can be used effectively to evaluate genetic diversity and undertake population genetics studies in Stylophora sp. populations.
    Description: This research was funded by King Abdullah University of Science and Technology (KAUST), Saudi Arabia.
    Keywords: Stylophora ; Tetra and dinucleotide microsatellites ; Red Sea ; Coral
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-05-25
    Description: © The Author(s), 2016. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Applied Microbiology and Biotechnology 100 (2016): 8315–8324, doi:10.1007/s00253-016-7777-0.
    Description: Endozoicomonas bacteria are emerging as extremely diverse and flexible symbionts of numerous marine hosts inhabiting oceans worldwide. Their hosts range from simple invertebrate species, such as sponges and corals, to complex vertebrates, such as fish. Although widely distributed, the functional role of Endozoicomonas within their host microenvironment is not well understood. In this review, we provide a summary of the currently recognized hosts of Endozoicomonas and their global distribution. Next, the potential functional roles of Endozoicomonas, particularly in light of recent microscopic, genomic, and genetic analyses, are discussed. These analyses suggest that Endozoicomonas typically reside in aggregates within host tissues, have a free-living stage due to their large genome sizes, show signs of host and local adaptation, participate in host-associated protein and carbohydrate transport and cycling, and harbour a high degree of genomic plasticity due to the large proportion of transposable elements residing in their genomes. This review will finish with a discussion on the methodological tools currently employed to study Endozoicomonas and host interactions and review future avenues for studying complex host-microbial symbioses.
    Description: This work was supported by a KAUST-WHOI Post-doctoral Partnership Award to MJN and a KAUST-WHOI Special Academic Partnership Funding Reserve Award to CRV and AA. Research in this study was further supported by baseline research funds to CRV by KAUST and NSF award OCE-1233612 to AA.
    Keywords: Endozoicomonas ; Symbiosis ; Marine ; Coral reefs
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...