GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2021-03-19
    Description: Gel particles, such as transparent exopolymer particles (TEP) and Coomassie stainable particles (CSP), are important organic components in the sea surface microlayer (SML). Here, we present results on the effect of different wind speeds on the accumulation and size distribution of TEP and CSP during a wind wave channel experiment in the Aeolotron. Total areas of TEP (TEPSML) and CSP (CSPSML) in the surface microlayer were exponentially related to wind speed. At wind speeds  〈  6 m s−1, accumulation of TEPSML and CSPSML occurred, decreasing at wind speeds of  〉  8 m s−1. Wind speeds  〉  8 m s−1 also significantly altered the size distribution of TEPSML in the 2–16 µm size range towards smaller sizes. The response of the CSPSML size distribution to wind speed varied through time depending on the biogenic source of gels. Wind speeds  〉  8 m s−1 decreased the slope of CSPSML size distribution significantly in the absence of autotrophic growth. For the slopes of TEP and CSP size distribution in the bulk water, no significant difference was observed between high and low wind speeds. Changes in spectral slopes between high and low wind speed were higher for TEPSML than for CSPSML, indicating that the impact of wind speed on size distribution of gel particles in the SML may be more pronounced for TEP than for CSP, and that CSPSML are less prone to aggregation during the low wind speeds. Addition of an E. huxleyi culture resulted in a higher contribution of submicron gels (0.4–1 µm) in the SML at higher wind speed ( 〉  6 m s−1), indicating that phytoplankton growth may potentially support the emission of submicron gels with sea spray aerosol.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-09-23
    Description: The coastal upwelling system off the coast of Peru is characterized by high biological activity and a pronounced subsurface oxygen minimum zone, as well as associated emissions of atmospheric trace gases such as N2O, CH4 and CO2. From 3 to 23 December 2012, R/V Meteor (M91) cruise took place in the Peruvian upwelling system between 4.59 and 15.4° S, and 82.0 to 77.5° W. During M91 we investigated the composition of the sea-surface microlayer (SML), the oceanic uppermost boundary directly subject to high solar radiation, often enriched in specific organic compounds of biological origin like chromophoric dissolved organic matter (CDOM) and marine gels. In the SML, the continuous photochemical and microbial recycling of organic matter may strongly influence gas exchange between marine systems and the atmosphere. We analyzed SML and underlying water (ULW) samples at 38 stations focusing on CDOM spectral characteristics as indicator of photochemical and microbial alteration processes. CDOM composition was characterized by spectral slope (S) values and excitation–emission matrix fluorescence (EEMs), which allow us to track changes in molecular weight (MW) of DOM, and to determine potential DOM sources and sinks. Spectral slope S varied between 0.012 to 0.043 nm−1 and was quite similar between SML and ULW, with no significant differences between the two compartments. Higher S values were observed in the ULW of the southern stations below 15° S. By EEMs, we identified five fluorescent components (F1–5) of the CDOM pool, of which two had excitation/emission characteristics of amino-acid-like fluorophores (F1, F4) and were highly enriched in the SML, with a median ratio SML : ULW of 1.5 for both fluorophores. In the study region, values for CDOM absorption ranged from 0.07 to 1.47 m−1. CDOM was generally highly concentrated in the SML, with a median enrichment with respect to the ULW of 1.2. CDOM composition and changes in spectral slope properties suggested a local microbial release of DOM directly in the SML as a response to light exposure in this extreme environment. In a conceptual model of the sources and modifications of optically active DOM in the SML and underlying seawater (ULW), we describe processes we think may take place (Fig. 1); the production of CDOM of higher MW by microbial release through growth, exudation and lysis in the euphotic zone, includes the identified fluorophores (F1, F2, F3, F4, F5). Specific amino-acid-like fluorophores (F1, F4) accumulate in the SML with respect to the ULW, as photochemistry may enhance microbial CDOM release by (a) photoprotection mechanisms and (b) cell-lysis processes. Microbial and photochemical degradation are potential sinks of the amino-acid-like fluorophores (F1, F4), and potential sources of reworked and more refractory humic-like components (F2, F3, F5). In the highly productive upwelling region along the Peruvian coast, the interplay of microbial and photochemical processes controls the enrichment of amino-acid-like CDOM in the SML. We discuss potential implications for air–sea gas exchange in this area.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-09-23
    Description: Halocarbons are produced naturally in the oceans by biological and chemical processes. They are emitted from surface seawater into the atmosphere, where they take part in numerous chemical processes such as ozone destruction and the oxidation of mercury and dimethyl sulfide. Here we present oceanic and atmospheric halocarbon data for the Peruvian upwelling zone obtained during the M91 cruise onboard the research vessel METEOR in December 2012. Surface waters during the cruise were characterized by moderate concentrations of bromoform (CHBr3) and dibromomethane (CH2Br2) correlating with diatom biomass derived from marker pigment concentrations, which suggests this phytoplankton group is a likely source. Concentrations measured for the iodinated compounds methyl iodide (CH3I) of up to 35.4 pmol L−1, chloroiodomethane (CH2ClI) of up to 58.1 pmol L−1 and diiodomethane (CH2I2) of up to 32.4 pmol L−1 in water samples were much higher than previously reported for the tropical Atlantic upwelling systems. Iodocarbons also correlated with the diatom biomass and even more significantly with dissolved organic matter (DOM) components measured in the surface water. Our results suggest a biological source of these compounds as a significant driving factor for the observed large iodocarbon concentrations. Elevated atmospheric mixing ratios of CH3I (up to 3.2 ppt), CH2ClI (up to 2.5 ppt) and CH2I2 (3.3 ppt) above the upwelling were correlated with seawater concentrations and high sea-to-air fluxes. During the first part of the cruise, the enhanced iodocarbon production in the Peruvian upwelling contributed significantly to tropospheric iodine levels, while this contribution was considerably smaller during the second part.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    Copernicus Publications (EGU)
    In:  Biogeosciences (BG), 10 (3). pp. 1291-1308.
    Publication Date: 2019-09-23
    Description: Responses to ocean acidification in plankton communities were studied during a CO2-enrichment experiment in the Arctic Ocean, accomplished from June to July 2010 in Kongsfjorden, Svalbard (78°56′ 2′′ N, 11°53′ 6′′ E). Enclosed in 9 mesocosms (volume: 43.9–47.6 m3), plankton was exposed to CO2 concentrations, ranging from glacial to projected mid-next-century levels. Fertilization with inorganic nutrients at day 13 of the experiment supported the accumulation of phytoplankton biomass, as indicated by two periods of high chl a concentration. This study tested for CO2 sensitivities in primary production (PP) of particulate organic carbon (PPPOC) and of dissolved organic carbon (PPDOC). Therefore, 14C-bottle incubations (24 h) of mesocosm samples were performed at 1 m depth receiving about 60% of incoming radiation. PP for all mesocosms averaged 8.06 ± 3.64 μmol C L−1 d−1 and was slightly higher than in the outside fjord system. Comparison between mesocosms revealed significantly higher PPPOC at elevated compared to low pCO2 after nutrient addition. PPDOC was significantly higher in CO2-enriched mesocosms before as well as after nutrient addition, suggesting that CO2 had a direct influence on DOC production. DOC concentrations inside the mesocosms increased before nutrient addition and more in high CO2 mesocosms. After addition of nutrients, however, further DOC accumulation was negligible and not significantly different between treatments, indicating rapid utilization of freshly produced DOC. Bacterial biomass production (BP) was coupled to PP in all treatments, indicating that 3.5 ± 1.9% of PP or 21.6 ± 12.5% of PPDOC provided on average sufficient carbon for synthesis of bacterial biomass. During the later course of the bloom, the response of 14C-based PP rates to CO2 enrichment differed from net community production (NCP) rates that were also determined during this mesocosm campaign. We conclude that the enhanced release of labile DOC during autotrophic production at high CO2 exceedingly stimulated activities of heterotrophic microorganisms. As a consequence, increased PP induced less NCP, as suggested earlier for carbon-limited microbial systems in the Arctic.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    Copernicus Publications (EGU)
    In:  Biogeosciences (BG), 12 . pp. 1271-1284.
    Publication Date: 2019-09-23
    Description: Extracellular release (ER) by phytoplankton is the major source of fresh dissolved organic carbon (DOC) in marine ecosystems and accompanies primary production during all growth phases. Little is known, so far, on size and composition of released molecules, and to which extent ER occurs passively, by leakage, or actively, by exudation. Here, we report on ER by the widespread and bloom-forming coccolithophore Emiliania huxleyi grown under steady state conditions in phosphorus controlled chemostats (N : P = 29, growth rate of μ = 0.2 d−1). 14C incubations were accomplished to determine primary production (PP), comprised by particulate (PO14C) and dissolved organic carbon (DO14C), and the concentration and composition of particulate combined carbohydrates (pCCHO), and of high molecular weight (〉1 kDa, HMW) dissolved combined carbohydrates (dCCHO) as major components of ER. Information on size distribution of ER products was obtained by investigating distinct size classes (〈0.40 μm, 〈1000 kDa, 〈100 kDa and 〈10 kDa) of DO14C and HMW-dCCHO. Our results revealed relatively low ER during steady state growth, corresponding to ∼4.5% of primary production, and similar ER rates for all size classes. Acidic sugars had a significant share on freshly produced pCCHO as well as on HMW-dCCHO. While pCCHO and the smallest size (〈10 kDa) fraction of HMW-dCCHO exhibited a similar sugar composition, dominated by high percentages of glucose (74–80 Mol%), the composition of HMW-dCCHO size-classes 〉10 kDa was significantly different with higher Mol% of arabinose. Mol% of acidic sugars increased and Mol% glucose decreased with increasing size of HMW-dCCHO. We conclude that larger polysaccharides follow different production and release pathways than smaller molecules, potentially serving distinct ecological and biogeochemical functions.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-09-23
    Description: Recent modeling results suggest that oceanic oxygen levels will decrease significantly over the next decades to centuries in response to climate change and altered ocean circulation. Hence the future ocean may experience major shifts in nutrient cycling triggered by the expansion and intensification of tropical oxygen minimum zones (OMZs). There are numerous feedbacks between oxygen concentrations, nutrient cycling and biological productivity; however, existing knowledge is insufficient to understand physical, chemical and biological interactions in order to adequately assess past and potential future changes. We investigated the pelagic biogeochemistry of OMZs in the eastern tropical North Atlantic and eastern tropical South Pacific during a series of cruise expeditions and mesocosm studies. The following summarizes the current state of research on the influence of low environmental oxygen conditions on marine biota, viruses, organic matter formation and remineralization with a particular focus on the nitrogen cycle in OMZ regions. The impact of sulfidic events on water column biogeochemistry, originating from a specific microbial community capable of highly efficient carbon fixation, nitrogen turnover and N2O production is further discussed. Based on our findings, an important role of sinking particulate organic matter in controlling the nutrient stochiometry of the water column is suggested. These particles can enhance degradation processes in OMZ waters by acting as microniches, with sharp gradients enabling different processes to happen in close vicinity, thus altering the interpretation of oxic and anoxic environments.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-09-23
    Description: Ocean acidification and carbonation, driven by anthropogenic emissions of carbon dioxide (CO2), have been shown to affect a variety of marine organisms and are likely to change ecosystem functioning. High latitudes, especially the Arctic, will be the first to encounter profound changes in carbonate chemistry speciation at a large scale, namely the under-saturation of surface waters with respect to aragonite, a calcium carbonate polymorph produced by several organisms in this region. During a CO2 perturbation study in 2010, in the framework of the EU-funded project EPOCA, the temporal dynamics of a plankton bloom was followed in nine mesocosms, manipulated for CO2 levels ranging initially from about 185 to 1420 μatm. Dissolved inorganic nutrients were added halfway through the experiment. Autotrophic biomass, as identified by chlorophyll a standing stocks (Chl a), peaked three times in all mesocosms. However, while absolute Chl a concentrations were similar in all mesocosms during the first phase of the experiment, higher autotrophic biomass was measured at high in comparison to low CO2 during the second phase, right after dissolved inorganic nutrient addition. This trend then reversed in the third phase. There were several statistically significant CO2 effects on a variety of parameters measured in certain phases, such as nutrient utilization, standing stocks of particulate organic matter, and phytoplankton species composition. Interestingly, CO2 effects developed slowly but steadily, becoming more and more statistically significant with time. The observed CO2 related shifts in nutrient flow into different phytoplankton groups (mainly diatoms, dinoflagellates, prasinophytes and haptophytes) could have consequences for future organic matter flow to higher trophic levels and export production, with consequences for ecosystem productivity and atmospheric CO2.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2020-10-20
    Description: Recent studies on the impacts of ocean acidification on pelagic communities have identified changes in carbon to nutrient dynamics with related shifts in elemental stoichiometry. In principle, mesocosm experiments provide the opportunity of determining temporal dynamics of all relevant carbon and nutrient pools and, thus, calculating elemental budgets. In practice, attempts to budget mesocosm enclosures are often hampered by uncertainties in some of the measured pools and fluxes, in particular due to uncertainties in constraining air–sea gas exchange, particle sinking, and wall growth. In an Arctic mesocosm study on ocean acidification applying KOSMOS (Kiel Off-Shore Mesocosms for future Ocean Simulation), all relevant element pools and fluxes of carbon, nitrogen and phosphorus were measured, using an improved experimental design intended to narrow down the mentioned uncertainties. Water-column concentrations of particulate and dissolved organic and inorganic matter were determined daily. New approaches for quantitative estimates of material sinking to the bottom of the mesocosms and gas exchange in 48 h temporal resolution as well as estimates of wall growth were developed to close the gaps in element budgets. However, losses elements from the budgets into a sum of insufficiently determined pools were detected, and are principally unavoidable in mesocosm investigation. The comparison of variability patterns of all single measured datasets revealed analytic precision to be the main issue in determination of budgets. Uncertainties in dissolved organic carbon (DOC), nitrogen (DON) and particulate organic phosphorus (POP) were much higher than the summed error in determination of the same elements in all other pools. With estimates provided for all other major elemental pools, mass balance calculations could be used to infer the temporal development of DOC, DON and POP pools. Future elevated pCO2 was found to enhance net autotrophic community carbon uptake in two of the three experimental phases but did not significantly affect particle elemental composition. Enhanced carbon consumption appears to result in accumulation of dissolved organic carbon under nutrient-recycling summer conditions. This carbon over-consumption effect becomes evident from mass balance calculations, but was too small to be resolved by direct measurements of dissolved organic matter. Faster nutrient uptake by comparatively small algae at high CO2 after nutrient addition resulted in reduced production rates under future ocean CO2 conditions at the end of the experiment. This CO2 mediated shift towards smaller phytoplankton and enhanced cycling of dissolved matter restricted the development of larger phytoplankton, thus pushing the system towards a retention type food chain with overall negative effects on export potential.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-09-23
    Description: The effect of elevated seawater carbon dioxide (CO2) on the activity of a natural bacterioplankton community in an Arctic fjord system was investigated by a mesocosm perturbation study in the frame of the European Project on Ocean Acidification (EPOCA). A pCO2 range of 175–1085 μatm was set up in nine mesocosms deployed in the Kongsfjorden (Svalbard). The bacterioplankton communities responded to rising chlorophyll a concentrations after a lag phase of only a few days with increasing protein production and extracellular enzyme activity and revealed a close coupling of heterotrophic bacterial activity to phytoplankton productivity in this experiment. The natural extracellular enzyme assemblages showed increased activity in response to moderate acidification. A decrease in seawater pH of 0.5 units roughly doubled rates of β-glucosidase and leucine-aminopeptidase. Activities of extracellular enzymes in the mesocosms were directly related to both seawater pH and primary production. Also primary production and bacterial protein production in the mesocosms at different pCO2 were positively correlated. Therefore, it can be suggested that the efficient heterotrophic carbon utilization in this Arctic microbial food web had the potential to counteract increased phytoplankton production that was achieved under elevated pCO2 in this study. However, our results also show that the transfer of beneficial pCO2-related effects on the cellular bacterial metabolism to the scale of community activity and organic matter degradation can be mitigated by the top-down control of bacterial abundances in natural microbial communities.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-09-23
    Description: Increasing atmospheric CO2 is decreasing ocean pH most rapidly in colder regions such as the Arctic. As a component of the EPOCA pelagic mesocosm experiment off Spitzbergen in 2010, we examined the consequences of decreased pH and increased pCO2 on the concentrations of dimethylsulphide (DMS). DMS is an important reactant and contributor to aerosol formation and growth in the Arctic troposphere. In the nine mesocosms with initial pH 8.3 to 7.5, equivalent to pCO2 of 180 to 1420 μatm, highly significant but inverse responses to acidity (hydrogen ion concentration [H+]) occurred following nutrient addition. Compared to ambient [H+], average concentrations of DMS during the most representative phase of the 30 d experiment were reduced by approximately 60% at the highest [H+] and by 35% at [H+] equivalent to 750 μatm pCO2, as predicted for 2100. In contrast, concentrations of dimethylsulphoniopropionate (DMSP), the precursor of DMS, were elevated by approximately 50% at the highest [H+] and by 30% at [H+] corresponding to 750 μatm pCO2. Measurements of the specific rate of synthesis of DMSP by phytoplankton indicate increased production at high [H+], in parallel to rates of inorganic carbon fixation. The elevated DMSP production at high [H+] was largely a consequence of increased dinoflagellate biomass and in particular, the increased abundance of the species Heterocapsa rotundata. We discuss both phytoplankton and bacterial processes that may explain the reduced ratios of DMS:DMSPt at higher [H+]. The experimental design of eight treatment levels provides comparatively robust empirical relationships of DMS and DMSP concentration, DMSP production and dinoflagellate biomass versus [H+] in Arctic waters.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...