GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    facet.materialart.
    Unknown
    AMER SOC LIMNOLOGY OCEANOGRAPHY
    In:  EPIC3Limnology and Oceanography, AMER SOC LIMNOLOGY OCEANOGRAPHY, ISSN: 0024-3590
    Publication Date: 2019-03-21
    Description: The early life-history stages of polar marine invertebrates are understudied, particularly in deep water. We present the results from a long-term (1999 – 2017) colonization experiment at the LTER (Long-Term Ecological Research) observatory HAUSGARTEN in the Fram Strait (Arctic Ocean, 79⁰ N, 04⁰ E, 2500 m water depth). Recruitment panels were constructed from plastic and brick and deployed attached to a metal frame in 1999. The experiment was monitored using an ROV in 2003 and 2011 and recovered in 2017. Recruitment was very low, with only foraminiferans being visible after 4 years (2003) and one metazoan species, the hydroid Halisiphonia arctica, being visible on the panels after 12 years (2011). After 18 years underwater, panels were colonized by 13 metazoan species as well as calcareous and agglutinating foraminiferans. Recruitment was higher on brick panels than on plastic, but while some species were more common on panels at higher altitude (H. arctica and the crinoid Bathycrinus carpenterii), others were more common on panels closer to the seafloor (serpulid polychaetes, agglutinating foraminifera) or on panels in line with the predominant bottom current (small round white sponge). The most common recruiting species can be described as opportunistic and are rare or absent in older communities on natural substrata nearby. Meanwhile, large hexactinellid sponges that are common in natural communities did not recruit to our panels. These results suggest that succession in the Arctic deep sea takes decades and involves early dominance by opportunistic species, with slower-growing, structureforming species appearing later on.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    PERGAMON-ELSEVIER SCIENCE LTD
    In:  EPIC3Marine Pollution Bulletin, PERGAMON-ELSEVIER SCIENCE LTD, 64(12), pp. 2734-2741, ISSN: 0025-326X
    Publication Date: 2014-10-07
    Description: Although recent research has shown that marine litter has made it even to the remotest parts of our planet, little information is available about temporal trends on the deep ocean floor. To quantify litter on the deep seafloor over time, we analysed images from the HAUSGARTEN observatory (79°N) taken in 2002, 2004, 2007, 2008 and 2011 (2500m depth). Our results indicate that litter increased from 3,635 to 7,710 items km-2 between 2002 and 2011 and reached densities similar to those reported from a canyon near the Portuguese capital Lisboa. Plastic constituted the majority of litter (59%) followed by a black fabric (11%) and cardboard/paper (7%). 67% of the litter was entangled or colonised by invertebrates such as sponges (41%) or sea anemones (15%). The changes in litter could be an indirect consequence of the receding sea ice, which opens the Arctic Ocean to the impacts of man’s activities.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...