GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
  • 2005-2009  (24)
Schlagwörter
Sprache
Erscheinungszeitraum
Jahr
  • 1
    In: Journal of geophysical research. C, Oceans, Hoboken, NJ : Wiley, 1978, 114(2009), 6, 2169-9291
    In: volume:114
    In: year:2009
    In: number:6
    In: extent:19
    Beschreibung / Inhaltsverzeichnis: Through the analysis of observational mooring data collected at the northeastern Laptev Sea continental slope in 2004-2007, we document a hydrographic seasonal signal in the intermediate Atlantic Water (AW) layer, with generally higher temperature and salinity from December-January to May-July and lower values from May-July to December-January. At the mooring position, this seasonal signal dominates, contributing up to 75% of the total variance. Our data suggest that the entire AW layer down to at least 840 m is affected by seasonal cycling, although the strength of the seasonal signal in temperature and salinity reduces from 260 m (±0.25ʿC and ±0.025 psu) to 840 m (±0.05ʿC and ±0.005 psu). The seasonal velocity signal is substantially weaker, strongly masked by high-frequency variability, and lags the thermohaline cycle by 45-75 days. We hypothesize that our mooring record shows a time history of the along-margin propagation of the AW seasonal signal carried downstream by the AW boundary current. Our analysis suggests that the seasonal signal in the Fram Strait Branch of AW (FSBW) at 260 m is predominantly translated from Fram Strait, while the seasonality in the Barents Sea branch of AW (BSBW) domain (at 840 m) is attributed instead to the seasonal signal input from the Barents Sea. However, the characteristic signature of the BSBW seasonal dynamics observed through the entire AW layer leads us to speculate that BSBW also plays a role in seasonally modifying the properties of the FSBW.
    Materialart: Online-Ressource
    Seiten: 19 , graph. Darst
    ISSN: 2169-9291
    Sprache: Englisch
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    In: Geophysical research letters, Hoboken, NJ : Wiley, 1974, 35(2008), 1944-8007
    In: volume:35
    In: year:2008
    In: extent:5
    Beschreibung / Inhaltsverzeichnis: The seasonal hydrographic cycle explains about 25-75% of the entire salinity variability spectrum of the Siberian shelf hydrography. Quasi-decadal variations in the seasonal salinity difference over the Laptev and East Siberian sea shelves derived from continuous summer-to-winter historical records from the 1960s-1990s are attributed to atmospheric vorticity quasi-decadal variations. Summer cyclonic vorticity results in riverine water accumulation on the shelf, increasing the salinity summer-to-winter difference. Summer anticyclonic wind pattern enhances fresh water movement from the shelf towards the Arctic Ocean that tends to weaken the seasonal salinity amplitude.
    Materialart: Online-Ressource
    Seiten: 5 , graph. Darst
    ISSN: 1944-8007
    Sprache: Englisch
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    In: Journal of geophysical research. C, Oceans, Hoboken, NJ : Wiley, 1978, 113(2008), 2169-9291
    In: volume:113
    In: year:2008
    In: extent:14
    Beschreibung / Inhaltsverzeichnis: A time series of summer fresh water content anomalies (FWCA) over the Laptev and East Siberian sea shelves was constructed from historical hydrographic records for the period from 1920 to 2005. Results from a multiple regression between FCWA and various atmospheric and oceanic indices show that the fresh water content on the shelves is mainly controlled by atmospheric vorticity on quasi-decadal timescales. When the vorticity of the atmosphere on the shelves is antycyclonic, approximately 500 km3 of fresh water migrates from the eastern Siberian shelf to the Arctic Ocean through the northeastern Laptev Sea. When the vorticity of the atmosphere is cyclonic, this fresh water remains on the southern Laptev and East Siberian sea shelves. This FWCA represents approximately 35% of the total fresh water inflow provided by river discharge and local sea-ice melt, and is about ten times larger than the standard deviation of the Lena River summer long-term mean discharge. However, the large interannual and spatial variability in the fresh water content of the shelves, as well as the spatial coverage of the hydrographic data, makes it difficult to detect the long-term tendency of fresh water storage associated with climate change
    Materialart: Online-Ressource
    Seiten: 14 , graph. Darst
    ISSN: 2169-9291
    Sprache: Englisch
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 4
    In: Journal of geophysical research. C, Oceans, Hoboken, NJ : Wiley, 1978, 113(2008), 2169-9291
    In: volume:113
    In: year:2008
    In: extent:13
    Beschreibung / Inhaltsverzeichnis: We document through the analysis of 2002-2005 observational data the recent Atlantic Water (AW) warming along the Siberian continental margin due to several AW warm impulses that penetrated into the Arctic Ocean through Fram Strait in 1999-2000. The AW temperature record from our long-term monitoring site in the northern Laptev Sea shows several events of rapid AW temperature increase totaling 0.8ʿC in FebruaryAugust 2004. We hypothesize the along-margin spreading of this warmer anomaly has disrupted the downstream thermal equilibrium of the late 1990s to earlier 2000s. The anomaly mean velocity of 2.4-2.5 ± 0.2 cm/s was obtained on the basis of travel time required between the northern Laptev Sea and two anomaly fronts delineated over the Eurasian flank of the Lomonosov Ridge by comparing the 2005 snapshot along-margin data with the AW pre-1990 mean. The magnitude of delineated anomalies exceeds the level of pre-1990 mean along-margin cooling and rises above the level of noise attributed to shifting of the AW jet across the basin margins. The anomaly mean velocity estimation is confirmed by comparing mooring-derived AW temperature time series from 2002 to 2005 with the downstream along-margin AW temperature distribution from 2005. Our mooring current meter data corroborate these estimations.
    Materialart: Online-Ressource
    Seiten: 13 , graph. Darst
    ISSN: 2169-9291
    Sprache: Englisch
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 5
    In: Deep-sea research. Part 1, Oceanographic research papers, Amsterdam [u.a.] : Elsevier Science, 1993, 56(2009), 4, Seite 513-527, 1879-0119
    In: volume:56
    In: year:2009
    In: number:4
    In: pages:513-527
    Beschreibung / Inhaltsverzeichnis: Inflow of Atlantic water (AW) from Fram Strait and the Barents Sea into the Arctic Ocean conditions the intermediate (100-1000 m) waters of the Arctic Ocean Eurasian margins. While over the Siberian margin the Fram Strait AW branch (FSBW) has exhibited continuous dramatic warming beginning in 2004, the tendency of the Barents Sea AW branch (BSBW) has remained poorly known. Here we document the contrary cooling tendency of the BSBW through the analysis of observational data collected from the icebreaker Kapitan Dranitsyn over the continental slope of the Eurasian Basin in 2005 and 2006. The CTD data from the R.V. Polarstern cruise in 1995 were used as a reference point for evaluating external atmospheric and sea-ice forcing and oxygen isotope analysis. Our data show that in 2006 the BSBW core was saltier (by ~0.037), cooler (~0.41 ʿC), denser (by ~0.04 kg/m3), deeper (by 150-200 m), and relatively better ventilated (by 78 mymol/kg of dissolved oxygen, or by 1.11.7% of saturation) compared with 2005. We hypothesize that the shift of the meridional wind from off-shore to on-shore direction during the BSBW translation through the Barents and northern Kara seas results in longer surface residence time for the BSBW sampled in 2006 compared with samples from 2005. The cooler, more saline, and better-ventilated BSBW sampled in 2006 may result from longer upstream translation through the Barents and northern Kara seas where the BSBW was modified by sea-ice formation and interaction with atmosphere. The data for stable oxygen isotopes from 1995 and 2006 reveals amplified brine modification of the BSBW core sampled downstream in 2006, which supports the assumption of an increased upstream residence time as indicated by wind patterns and dissolved oxygen values.
    Materialart: Online-Ressource
    Seiten: graph. Darst
    ISSN: 1879-0119
    Sprache: Englisch
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 6
    facet.materialart.
    Unbekannt
    PANGAEA
    In:  Supplement to: Bauch, Dorothea; Dmitrenko, Igor; Wegner, Carolyn; Hölemann, Jens A; Kirillov, Sergey A; Timokhov, Leonid; Kassens, Heidemarie (2009): Exchange of Laptev Sea and Arctic Ocean halocline waters in response to atmospheric forcing. Journal of Geophysical Research: Oceans, 114, C05008, https://doi.org/10.1029/2008JC005062
    Publikationsdatum: 2024-04-16
    Beschreibung: Combined d18O/salinity data reveal a distinctive water mass generated during winter sea ice formation which is found predominantly in the coastal polynya region of the southern Laptev Sea. Export of the brine-enriched bottom water shows interannual variability in correlation with atmospheric conditions. Summer anticyclonic circulation is favoring an offshore transport of river water at the surface as well as a pronounced signal of brine-enriched waters at about 50 m water depth at the shelf break. Summer cyclonic atmospheric circulation favors onshore or an eastward, alongshore water transport, and at the shelf break the river water fraction is reduced and the pronounced brine signal is missing, while on the middle Laptev Sea shelf, brine-enriched waters are found in high proportions. Residence times of bottom and subsurface waters on the shelf may thereby vary considerably: an export of shelf waters to the Arctic Ocean halocline might be shut down or strongly reduced during "onshore" cyclonic atmospheric circulation, while with "offshore" anticyclonic atmospheric circulation, brine waters are exported and residence times may be as short as 1 year only.
    Schlagwort(e): ARK-XIV/1b; CTD/Rosette; CTD-RO; East Siberian Sea; Giant box corer; GKG; Helicopter; IK03-01-A; IK03-02-A; IK03-03-A; IK03-03-B; IK03-04-A; IK03-05-A; IK03-06-A; IK03-07-A; IK03-08-A; IK03-09-A; IK03-10-A; IK03-11-A; IK03-12-A; IK03-13-A; IK03-14-A; IK03-15-A; IK03-16-A; IK03-17-A; IK03-18-A; IK03-19-A; IK03-20-A; IK03-21-A; IK03-22-A; IK03-23-A; IK93_1; IK93_10; IK93_100; IK93_101; IK93_102; IK93_103; IK93_104; IK93_105; IK93_106; IK93_107; IK93_108; IK93_109; IK93_11; IK93_110; IK93_111; IK93_112; IK93_113; IK93_114; IK93_115; IK93_116; IK93_117; IK93_118; IK93_119; IK93_12; IK93_120; IK93_121; IK93_122; IK93_123; IK93_124; IK93_125; IK93_126; IK93_127; IK93_128; IK93_129; IK93_13; IK93_130; IK93_131; IK93_14; IK93_15; IK93_16; IK93_17; IK93_18; IK93_19; IK93_2; IK93_20; IK93_21; IK93_22; IK93_23; IK93_24; IK93_25; IK93_26; IK93_27; IK93_28; IK93_29; IK93_3; IK93_30; IK93_31; IK93_32; IK93_33; IK93_34; IK93_35; IK93_36; IK93_37; IK93_38; IK93_38a; IK93_39; IK93_4; IK93_40; IK93_41; IK93_42; IK93_43; IK93_44; IK93_45; IK93_45a; IK93_46; IK93_47; IK93_48; IK93_49; IK93_5; IK93_50; IK93_51; IK93_52; IK93_53; IK93_54; IK93_55; IK93_56; IK93_57; IK93_58; IK93_59; IK93_6; IK93_60; IK93_61; IK93_62; IK93_63; IK93_64; IK93_65; IK93_66; IK93_67; IK93_68; IK93_69; IK93_7; IK93_70; IK93_71; IK93_72; IK93_73; IK93_74; IK93_75; IK93_76; IK93_77; IK93_78; IK93_79; IK93_8; IK93_80; IK93_81; IK93_82; IK93_83; IK93_84; IK93_85; IK93_86; IK93_87; IK93_88; IK93_89; IK93_9; IK93_90; IK93_91; IK93_92; IK93_93; IK93_94; IK93_95; IK93_96; IK93_97; IK93_98; IK93_99; Ivan Kireyev; Kapitan Dranitsyn; Kara Sea; KD9501-1; KD9502-1; KD9502-2; KD9502-3; KD9502-4; KD9503-1; KD9504-1; KD9505-1; KD9506-1; KD9507-1; KD9508-1; KD9509-1; KD9510-1; KD9511-1; KD9512-1; KD9513-1; KD9514-1; KD9515-1; KD9516-1; KD9517-1; KD9518-1; KD9519-1; KD9520-1; KD9521-1; KD9522-1; KD9523-1; KD9524-1; KD9525-1; KD9526-1; KD9527-1; KD9528-1; KD9529-1; KD9530-1; KD9531-1; KD9532-1; KD9533-1; KD9534-1; KD9536-1; KD9538-1; KD9540-1; KD9541-1; KD9543-1; KD9545-1; KD9546-1; KD9547-1; KD9548-1; KD9549-1; KD9550-1; KD9551-1; KD9552-1; KD9553-1; KD9554-1; KD9555-1; KD9556-1; KD9557-1; KD9558-1; KD9559-1; KD9560-1; KD9564-1; KD9565-1; KD9566-1; KD9567-1; KD9568-1; KD9569-1; KD9570-1; KD9571-1; KD9573-1; KD9574-1; Laptev Sea; Laptev Sea System; Lena Nordenskøld Station; LN9601-1; LN9602-1; LN9603-1; LN9603A-2; LN9603B-2; LN9604-1; LN9604A-2; LN9604B-2; LN9605-1; LN9605A-1; LN9605B-1; LN9606-1; LN9606A-2; LN9606B-2; LN9608-2; LN9608A-3; LN9608B-2; LN9609-1; LN9609A-2; LN9609B-2; LN9610-1; LN9610A-2; LN9610B-1; LN9611-2; LN9611A-3; LN9611B-3; LN9612-1; LN9613-1; LN9614-1; LN9615-1; LN9616-1; LN9617-1; LN9618-1; LN9619-1; LN9620-1; LN9620A-2; LN9621-1; LN9621A-2; LN9622-1; LN9623-1; LN9623A-2; LN9624-2; LN9624A-1; LN9625-1; LSS; MULT; Multiple investigations; PM9401-1; PM9401-2; PM9401-3; PM9402-1; PM9402-2; PM9402-3; PM9402-4; PM9402-5; PM9402-6; PM9402-7; PM9403-1; PM9403-2; PM9404-1; PM9405-1; PM9405-2; PM9406-1; PM9407-1; PM9407-2; PM9408-1; PM9409-1; PM94100-1; PM9410-1; PM94101-1; PM9410-2; PM9411-1; PM9412-1; PM9413-1; PM9413-10; PM9413-11; PM9413-12; PM9413-13; PM9413-2; PM9413-3; PM9413-4; PM9413-5; PM9413-6; PM9413-7; PM9413-8; PM9413-9; PM9414-1; PM9415-1; PM9415-2; PM9416-1; PM9416-2; PM9417-1; PM9417-10; PM9417-11; PM9417-12; PM9417-13; PM9417-14; PM9417-15; PM9417-16; PM9417-17; PM9417-2; PM9417-3; PM9417-4; PM9417-5; PM9417-6; PM9417-7; PM9417-8; PM9417-9; PM9418-1; PM9418-2; PM9419-1; PM9419-2; PM9419-3; PM9420-1; PM9420-2; PM9421-1; PM9421-2; PM9422-1; PM9423-1; PM9424; PM9424-1; PM9424-10; PM9424-11; PM9424-12; PM9424-13; PM9424-14; PM9424-15; PM9424-16; PM9424-17; PM9424-18; PM9424-2; PM9424-20; PM9424-3; PM9424-4; PM9424-5; PM9424-6; PM9424-7; PM9424-8; PM9424-9; PM9425-1; PM9426-1; PM9426-2; PM9427-1; PM9427-2; PM9428-1; PM9428-2; PM9429-1; PM9429-2; PM9430-1; PM9430-2; PM9431-1; PM9431-2; PM9432-1; PM9432-2; PM9433-1; PM9433-2; PM9434-1; PM9435-1; PM9436-1; PM9436-2; PM9437-1; PM9437-2; PM9437-3; PM9438-1; PM9438-2; PM9439-1; PM9440-1; PM9440-2; PM9441-1; PM9441-2; PM9442-1; PM9442-2; PM9442-3; PM9442-4; PM9442-5; PM9442-6; PM9442-7; PM9442-8; PM9443-1; PM9443-2; PM9444-1; PM9444-2; PM9445-1; PM9445-10; PM9445-11; PM9445-12; PM9445-13; PM9445-14; PM9445-15; PM9445-16; PM9445-17; PM9445-2; PM9445-3; PM9445-4; PM9445-6; PM9445-7; PM9445-8; PM9445-9; PM9446-1; PM9447-1; PM9448-1; PM9449-1; PM9449-2; PM9450-1; PM9451-1; PM9452-1; PM9453-1; PM9454-1; PM9455-1; PM9456-1; PM9457-1; PM9458-1; PM9459-1; PM9460-1; PM9461-1; PM9462-1; PM9462-2; PM9463; PM9463-1; PM9463-10; PM9463-11; PM9463-12; PM9463-13; PM9463-14; PM9463-15; PM9463-16; PM9463-17; PM9463-18; PM9463-2; PM9463-20; PM9463-21; PM9463-22; PM9463-23; PM9463-24; PM9463-25; PM9463-26; PM9463-27; PM9463-28; PM9463-29; PM9463-3; PM9463-30; PM9463-31; PM9463-32; PM9463-33; PM9463-34; PM9463-35; PM9463-36; PM9463-37; PM9463-38; PM9463-39; PM9463-4; PM9463-40; PM9463-41; PM9463-42; PM9463-43; PM9463-5; PM9463-6; PM9463-7; PM9463-8; PM9463-9; PM9465-1; PM9466-1; PM9466-2; PM9466-3; PM9467-1; PM9467-2; PM9468-1; PM9468-2; PM9469-1; PM9469-2; PM9470-1; PM9470-2; PM9471-1; PM9472-1; PM9473-1; PM9474-1; PM9475-1; PM9476-1; PM9477-1; PM9478-1; PM9479-1; PM9480-1; PM9481-1; PM9483-1; PM9484-1; PM9485-1; PM9486-1; PM9487-1; PM9488-1; PM9489-1; PM9490-1; PM9491-1; PM9493-1; PM9493-2; PM9494-1; PM9495-1; PM9496-1; PM9497-1; PM9498-1; PM9499-1; PM94a33-1; PM94a51-10; PM94a51-11; PM94a51-12; PM94a51-13; PM94a51-14; PM94a51-15; PM94a51-16; PM94a51-17; PM94a51-18; PM94a51-2; PM94a51-3; PM94a51-4; PM94a51-5; PM94a51-6; PM94a51-7; PM94a51-8; PM94a51-9; PM94a57-1; PM94K01; PM94K02; PM94K03; PM94K04; PM94K05; PM94K06; PM94K07-1; PM94K08-1; PM94K08-2; PM94K09-1; PM94K09-2; PM94K10-1; PM94K10-2; PM94K11-1; PM94K12; PM94K12-1; PM94K12-11; PM94K12-12; PM94K12-13; PM94K12-14; PM94K12-15; PM94K12-16; PM94K12-17; PM94K12-18; PM94K12-2; PM94K12-20; PM94K12-21; PM94K12-22; PM94K12-23; PM94K12-24; PM94K12-25; PM94K12-26; PM94K12-27; PM94K12-28; PM94K12-29; PM94K12-3; PM94K12-4; PM94K12-5; PM94K12-6; PM94K12-7; PM94K12-8; PM94K12-9; PM94K13; PM94K13-1; PM94K13-10; PM94K13-11; PM94K13-12; PM94K13-13; PM94K13-14; PM94K13-15; PM94K13-16; PM94K13-17; PM94K13-18; PM94K13-2; PM94K13-20; PM94K13-21; PM94K13-22; PM94K13-23; PM94K13-24; PM94K13-25; PM94K13-26; PM94K13-27; PM94K13-28; PM94K13-29; PM94K13-3; PM94K13-30; PM94K13-31; PM94K13-32; PM94K13-33; PM94K13-34; PM94K13-4; PM94K13-5; PM94K13-6; PM94K13-7; PM94K13-8; PM94K13-9; PM94K14-1; PM94K14-2; PM94K14-3; PM94K14-4; PM94K14-5; PM94K15-1; PM94K16-1; Polarstern; Professor Multanovskiy; PS51/078-1; PS51/080-7; PS51/082-1; PS51/083-2; PS51/084-2; PS51/086-1; PS51/087-2; PS51/089-1; PS51/090-1; PS51/091-1; PS51/092-7; PS51/095-3; PS51/096-3; PS51/097-1; PS51/098-3; PS51/099-3; PS51/100-3; PS51/101-1; PS51/102-3; PS51/103-1; PS51/104-7; PS51/110-3; PS51/112-3; PS51/114-2; PS51/116-1; PS51/120-1; PS51/122-1; PS51/125-2; PS51/129-1; PS51/130-1; PS51/131-2; PS51/132-2; PS51/133-2; PS51/134-3; PS51/138-7; PS51/144-5; PS51/145-2; PS51/146-5; PS51/147-2; PS51/148-5; PS51/149-5; PS51/150-5; PS51/151-2; PS51/152-4; PS51/153-2; PS51/154-4; PS51/157-2; PS51/158-2; PS51/159-5; PS51 Transdrift-V; TI99; TI9901-1; TI9902-1; TI9903-1; TI9904-1; TI9905-1; TI9906-1; TI9907-1; TI9908-1; TI9909-1; TI9910-1; TI9911-1; TI9912-1; TI9913-1; TI9914-1; TI9915-1; TI9916-1; TI9917-1; TI9918-1; TI9919-1; TI9920-1; TI9921-1; TI9922-1; TI9923-1; TI9924-1; Transdrift-I; Transdrift-II; Transdrift-III; Transdrift-IV; Transdrift-IX; Transdrift-VI; Transdrift-VII; Transdrift-VIII; Water sample; WS; Yakov Smirnitskiy; YS00_01; YS00_02; YS00_03; YS00_04; YS00_05; YS00_06; YS00_07; YS00_08; YS00_09; YS00_10; YS00_11; YS00_12; YS00_13; YS00_14; YS00_15; YS00_16; YS00_17; YS00_18; YS00_19; YS00_20; YS00_21; YS00_22; YS00_23; YS00_24; YS00_25; YS00_26; YS00_27; YS00_28; YS00_29; YS00_30; YS00_31; YS00_32; YS00_33; YS00_34; YS00_35; YS00_36; YS00_37; YS00_38; YS00_39;
    Materialart: Dataset
    Format: application/zip, 17 datasets
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 7
    Publikationsdatum: 2018-12-31
    Beschreibung: Recent observations show dramatic changes of the Arctic atmosphere–ice–ocean system. Here the authors demonstrate, through the analysis of a vast collection of previously unsynthesized observational data, that over the twentieth century the central Arctic Ocean became increasingly saltier with a rate of freshwater loss of 239 ± 270 km3 decade−1. In contrast, long-term (1920–2003) freshwater content (FWC) trends over the Siberian shelf show a general freshening tendency with a rate of 29 ± 50 km3 decade−1. These FWC trends are modulated by strong multidecadal variability with sustained and widespread patterns. Associated with this variability, the FWC record shows two periods in the 1920s–30s and in recent decades when the central Arctic Ocean was saltier, and two periods in the earlier century and in the 1940s–70s when it was fresher. The current analysis of potential causes for the recent central Arctic Ocean salinification suggests that the FWC anomalies generated on Arctic shelves (including anomalies resulting from river discharge inputs) and those caused by net atmospheric precipitation were too small to trigger long-term FWC variations in the central Arctic Ocean; to the contrary, they tend to moderate the observed long-term central-basin FWC changes. Variability of the intermediate Atlantic Water did not have apparent impact on changes of the upper–Arctic Ocean water masses. The authors’ estimates suggest that ice production and sustained draining of freshwater from the Arctic Ocean in response to winds are the key contributors to the salinification of the upper Arctic Ocean over recent decades. Strength of the export of Arctic ice and water controls the supply of Arctic freshwater to subpolar basins while the intensity of the Arctic Ocean FWC anomalies is of less importance. Observational data demonstrate striking coherent long-term variations of the key Arctic climate parameters and strong coupling of long-term changes in the Arctic–North Atlantic climate system. Finally, since the high-latitude freshwater plays a crucial role in establishing and regulating global thermohaline circulation, the long-term variations of the freshwater content discussed here should be considered when assessing climate change and variability.
    Materialart: Article , PeerReviewed
    Format: text
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 8
    facet.materialart.
    Unbekannt
    In:  [Talk] In: SCAR/IASC IPY Open Science Conference "Polar Research - Arctic and Antarctic Perspectives in the International Polar Year", 08.07.-11.07.2008, St. Petersburg, Russia .
    Publikationsdatum: 2019-09-23
    Materialart: Conference or Workshop Item , NonPeerReviewed
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 9
    facet.materialart.
    Unbekannt
    In:  [Talk] In: OSL Annual Meeting - 2007/2008 Fellowship Program, 25.02.-26.02.2008, Kiel .
    Publikationsdatum: 2015-04-16
    Materialart: Conference or Workshop Item , NonPeerReviewed
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 10
    Publikationsdatum: 2019-09-23
    Materialart: Conference or Workshop Item , NonPeerReviewed
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...