GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2010-2014  (69)
Document type
Keywords
Language
Year
  • 1
    Online Resource
    Online Resource
    Paris :Springer Paris,
    Keywords: Neovascularization. ; Electronic books.
    Description / Table of Contents: This book reviews recent advances in understanding of the molecular and cellular mechanisms of angiogenesis, with a focus on how to integrate these observations into the context of developmental, post-natal and pathological neovascularization.
    Type of Medium: Online Resource
    Pages: 1 online resource (501 pages)
    Edition: 1st ed.
    ISBN: 9782817804668
    DDC: 612.13
    Language: English
    Note: Intro -- Contents -- Angiogenesis: An Ever-Challenging Research Field -- Acknowledgment -- References -- Part I: Angiogenesis During Embryonic Development -- Chapter 1: Emergence of Endothelial Cells During Vascular Development -- 1.1 Introduction -- 1.2 Vasculogenesis -- 1.3 Hemangioblast -- 1.4 Remodeling of the Primary Capillary Plexus into Arteries and Veins -- 1.5 Role of Hemodynamic Forces in Remodeling -- 1.6 Guidance of Capillaries by Endothelial Tip Cells -- 1.7 Circulating Endothelial Cells in the Embryo -- 1.8 Perspectives -- References -- Chapter 2: Lymphatic Vascular Morphogenesis -- 2.1 Early Steps of Lymphatic Vascular Development -- 2.1.1 Lymphatic Endothelial Cell Specification -- 2.1.2 Lymphatic Vessel Sprouting from the Veins -- 2.1.3 Separation of Lymphatic and Blood Vasculatures -- 2.1.4 Non-venous Origins of Lymphatic Vasculature -- 2.2 Lymphatic Vessel Remodelling -- 2.2.1 Sprouting and Growth of Lymphatic Vessels -- 2.2.2 Regulation of Lymphatic Endothelial Cell-Cell Junctions -- 2.2.3 Valve Morphogenesis -- 2.2.4 Smooth Muscle Cells Recruitment to Collecting Lymphatic Vessels -- 2.3 Lymphatic Vasculature and Diseases -- 2.3.1 Lymphoedema -- 2.3.2 Inflammation -- 2.3.3 Tumour Metastasis -- 2.3.4 Lipid Absorption -- 2.4 Concluding Remarks -- References -- Part II: The Physiological Angiogenic Signal: Cellular and Molecular Mechanisms -- Chapter 3: Finding New Partnerships: The Function of Individual Extracellular Receptor Domains in Angiogenic Signalling by VEGF Receptors -- 3.1 Biology of VEGF Family Growth Factors and Their Receptors -- 3.1.1 Introduction to VEGF -- 3.1.2 Structure-Function Relationship of VEGF and VEGF Receptors -- 3.1.2.1 Receptor Specificity of VEGFs -- 3.1.2.2 Structural Analysis of VEGF Binding to VEGFR-1, VEGFR-2 and VEGFR-3 -- 3.1.2.3 Activation of VEGF Receptors. , 3.2 VEGFR-2 as Part of a Signalling Platform -- 3.2.1 Neuropilins (NRPs) -- 3.2.2 Ephrin-B2 -- 3.2.3 VE-Cadherin -- 3.2.4 Dopamine Receptor D2 -- 3.2.5 CD146 -- 3.2.6 CD44 -- 3.3 Extracellular Components of the VEGF/VEGFR Signalling Cascade as Targets for Therapy and Functional Inhibition -- 3.3.1 VEGF/VEGFRs in Disease -- 3.3.2 VEGF/VEGFRs as Targets in Therapeutic Inhibition -- 3.3.2.1 VEGF-Neutralising Agents -- 3.3.2.2 Anti-VEGFR-1 Agents -- 3.3.2.3 Anti-VEGFR-2 D23 Agents -- 3.3.2.4 Anti-VEGFR-2 D4-7 Agents -- 3.3.3 Limitations to VEGF/VEGFR Targeted Therapy -- 3.3.4 Outlook and Conclusions -- References -- Chapter 4: Wnt/Frizzled Signaling in the Vasculature -- 4.1 Introduction -- 4.1.1 Wnt Signal Transduction -- 4.1.1.1 The Canonical Pathway: Wnt/β-Catenin -- 4.1.1.2 The Planar Cell Polarity Pathway -- 4.1.1.3 The Calcium-Mediated Pathway -- 4.1.2 Wnt Inhibitors and Modulators -- 4.1.3 Atypical Receptors Kinases -- 4.2 Role of the Wnt/Frizzled in Vascular Development -- 4.2.1 Evidence of Wnt/Fzd Expression and Signaling in Endothelial Cells -- 4.2.2 Placental Development -- 4.2.3 Postnatal Retinal Angiogenesis -- 4.2.4 Brain Vasculature -- 4.3 Role of Wnt Regulation in Vascular Pathology -- 4.3.1 Choroidal Neovascularization and Oxygen-Induced Retinopathy -- 4.3.2 Wound Healing -- 4.3.3 Hind Limb and Cardiac Ischemia -- 4.4 Conclusion -- 4.5 Online Databases -- References -- Chapter 5: BMP9, BMP10, and ALK1: An Emerging Vascular Signaling Pathway with Therapeutic Applications -- 5.1 Bone Morphogenetic Proteins (BMPs) -- 5.2 BMP9/BMP10/ALK1 Signaling Complex -- 5.3 The Role of BMP9 and BMP10 in Vascular Development -- 5.3.1 Knowledge from Human Vascular Diseases -- 5.3.2 Knowledge from Animal Models: Mice and Zebrafish -- 5.3.2.1 Mice -- 5.3.2.2 Zebrafish -- 5.3.3 In Vitro Roles of BMP9 and BMP10 in Endothelial Cells. , 5.4 Therapeutic Applications of the BMP9/BMP10/ALK1 Signaling Pathway -- 5.4.1 HHT -- 5.4.2 BMP9, BMP10, and ALK1 as Biomarkers in Cancer -- 5.4.3 Therapeutic Applications of the BMP9/BMP10/ALK1 Signaling Pathway in Tumor Angiogenesis -- 5.4.3.1 ALK1 Extracellular Domain (ALK1 ECD) -- 5.4.3.2 Anti-ALK1 Antibody (PF-03446962) -- 5.4.3.3 Anti-endoglin Antibody (TRC105) -- 5.5 Conclusions and Perspectives -- References -- Chapter 6: Apelin Signaling in Retinal Angiogenesis -- 6.1 Apelin Signaling -- 6.1.1 Receptor Discovery and Isolation of the Endogenous Ligand -- 6.1.2 Multiple Active Ligands and Receptor Heterodimers -- 6.1.3 Gene Transcription and Mode of Signaling -- 6.1.4 Physiological Functions of Apelin Signaling -- 6.2 The Retina -- 6.2.1 Anatomy and Development -- 6.2.2 Astrocyte: The Key Mediator of Neuron/Endothelial Cell Interactions -- 6.2.3 Developmental Patterning of Retinal Vessels -- 6.2.4 Subpopulations of Endothelial Cells -- 6.3 Apelin Signaling and Formation of Retinal Vessels -- 6.3.1 Apelin: A Bona Fide Angiogenic Factor -- 6.3.2 Vascular Phenotype of Apelin or APJ Gene Invalidation -- 6.3.3 Temporal Expression of Apelin Signaling Coincides with the Angiogenic Phase -- 6.3.4 Apelin Receptor Gene: An Early Marker of the Venous Phenotype -- 6.3.5 Receptor and Ligand Gene as Potential Markers of Tip or Stalk Phenotype -- 6.3.6 Apelin Signaling as a Linker Between VEGF-Secreting Astrocytes and Proliferating Stalk Cells -- 6.3.7 Apelin Signaling Regulates LIF Secretion and Controls Astrocyte Maturation -- 6.4 Apelin Signaling and Pathological Retinal Angiogenesis -- 6.4.1 The Retinopathy of Prematurity -- 6.4.2 Diabetic Retinopathy -- 6.4.3 Telangiectatic Vessels -- 6.5 Clinical Implications -- References -- Chapter 7: Emerging Role of the Two Related Basic Helix-Loop-Helix Proteins TAL1 and LYL1 in Angiogenesis -- 7.1 Introduction. , 7.2 Properties of LYL1 and TAL1 -- 7.3 Hematopoietic Functions of Tal1, Lyl1, and Lmo2 -- 7.4 Tal1 and Lmo2 Are Required for Cardiovascular Development -- 7.5 TAL1 Activity Is Required in the Early Steps of Angiogenesis -- 7.5.1 TAL1 and LMO2 Initiate Tubulogenesis Through VE-Cadherin Upregulation -- 7.5.2 TAL1-LMO2 Complexes Controls Angiopoietin-2 Expression -- 7.6 LYL1 Is Required for the Maturation of New Blood Vessels -- 7.6.1 Lyl1 Deficiency Leads to Increased Angiogenic Responses -- 7.6.2 LYL1 Contributes to Vessel Maturation and Stabilization -- 7.7 Coordinated Activity of TAL1 and LYL1 to Regulate Angiogenic Processes -- References -- Part III: Hypoxia, Ischemia and Angiogenesis -- Chapter 8: Hypoxia and Extracellular Matrix Remodeling -- 8.1 Hypoxia Induction of Angiogenesis -- 8.2 Establishment of the Vascular BM -- 8.3 Extracellular Matrix Proteolytic Degradation -- 8.4 Regulation of Hypoxia-Induced Growth Factor Sequestration in the Extracellular Matrix -- 8.5 Matricellular Proteins -- 8.5.1 Group A Thrombospondins -- 8.5.2 Group B Thrombospondins -- 8.6 Conclusion -- References -- Chapter 9: Sphingosine-1-Phosphate in Hypoxic Signaling -- 9.1 Hypoxia Significance and Impact on Clinical Outcome -- 9.2 The Hypoxia-Inducible Factors -- 9.3 Sphingosine 1-Phosphate Metabolism in Cancer -- 9.4 Sphingosine 1-Phosphate Signaling in Hypoxia -- 9.5 Sphingosine 1-Phosphate Signaling as a Target for Anti- hypoxic Strategy -- 9.6 Concluding Remarks -- References -- Chapter 10: Reciprocal Crosstalk Between Angiogenesis and Metabolism -- 10.1 Regulation of Angiogenesis by Oxygen and Metabolism -- 10.1.1 PHDs and HIF: The Molecular Players of Angiogenesis Are Regulated by Oxygen and Metabolic Intermediates -- 10.1.2 Modulators of HIF and PHDs by Nonhypoxic Stimuli -- 10.1.2.1 TCA Cycle and Other Metabolic Intermediates. , 10.1.2.2 Reactive Oxygen Species -- 10.1.3 Modulation of Angiogenesis by Metabolic Regulators -- 10.2 EC Metabolism Impacts Vessel Sprouting -- 10.2.1 EC Survival and Functions Are Dependent on Glycolysis -- 10.2.2 Metabolic Changes During Vascular Sprouting -- 10.3 Regulation of Metabolism by Angiogenesis -- Bibliography -- Chapter 11: Endothelial Progenitor Cells and Cardiovascular Ischemic Diseases: Characterization, Functions, and Potential Clinical Applications -- 11.1 Introduction -- 11.2 Cultured EPC -- 11.3 Recruitment of EPCs to the Ischemic Tissue -- 11.3.1 CXCL12/CXCR4 -- 11.3.2 Integrins and Selectins -- 11.3.3 Hemostatic Partners, Thrombospondin, and Thrombin Interaction with EPCs -- 11.3.4 Other Factors -- 11.4 Mechanisms of EPC-Related Effects on Postischemic Revascularization -- 11.4.1 Differentiation into Endothelial Cells -- 11.4.2 Paracrine Effects -- 11.4.3 Interaction with the Host Environment -- 11.5 EPCs as Diagnostic and Prognostic Tools -- 11.5.1 EPCs as Biomarkers of Cardiovascular Diseases -- 11.5.1.1 EPCs and Cardiovascular Risk Factors -- 11.5.1.2 EPCs and the Prevalence of CVDs -- 11.5.2 Are EPCs a Useful Prognostic Factor for Cardiovascular Diseases? -- 11.6 EPCs as Therapeutic Tools -- 11.6.1 Adult Stem/Progenitor Cells -- 11.6.2 Alternative Sources of EPCs -- 11.6.2.1 Embryonic Stem Cells (ESCs) -- 11.6.2.2 Induced Pluripotent Stem Cells (iPSCs) -- 11.6.2.3 Local Source of Stem/Progenitor Cells -- 11.7 Conclusion -- References -- Part IV: Tumor Angiogenesis -- Chapter 12: Endothelial Cell Reactions to Oxygen: Implications for Cancer -- 12.1 Overview of Oxygen-Mediated Pathways -- 12.2 Hypoxia-Inducible Factors Mediate Cellular Oxygen Signaling -- 12.3 The Function of Prolyl Hydroxylase Domain Proteins and Factor Inhibiting HIF as Oxygen Sensors. , 12.4 Role of Oxygen Signaling in Physiological and Pathophysiological Angiogenesis.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Trotter, Julie; Montagna, Paolo; McCulloch, Malcolm T; Silenzi, Sergio; Reynaud, Stéphanie; Mortimer, Graham; Martin, Sophie; Ferrier-Pagès, Christine; Gattuso, Jean-Pierre; Rodolfo-Metalpa, Riccardo (2011): Quantifying the pH 'vital effect' in the temperate zooxanthellate coral Cladocora caespitosa: Validation of the boron seawater pH proxy. Earth and Planetary Science Letters, 303, 163-173, https://doi.org/10.1016/j.epsl.2011.01.030
    Publication Date: 2023-03-14
    Description: Boron isotopic and elemental systematics are used to define the vital effects for the temperate shallow water Mediterranean coral Cladocora caespitosa. The corals are from a range of seawater pH conditions (pHT ~ 7.6 to ~ 8.1) and environmental settings: (1) naturally living colonies harvested from normal pH waters offshore Levanto, (2) colonies transplanted nearby a subsea volcanic vent system, and (3) corals cultured in aquaria exposed to high (700 µatm) and near present day (400 µatm) pCO2 levels. B/Ca compositions measured using laser ablation inductively coupled mass spectrometry (LA-ICPMS) show that boron uptake by C. caespitosa cultured at different pCO2 levels is independent of ambient seawater pH being mainly controlled by temperature-dependent calcification. In contrast, the boron isotope compositions (delta11Bcarb) of the full suite of corals determined by positive thermal ionisation mass spectrometry (PTIMS) shows a clear trend of decreasing delta11Bcarb (from 26.7 to 22.2 %o) with decreasing seawater pH, reflecting the strong pH dependence of the boron isotope system. The delta11Bcarb compositions together with measurements of ambient seawater parameters enable calibration of the boron pH proxy for C. caespitosa, by using a new approach that defines the relationship between ambient seawater pH (pHsw) and the internally controlled pH at the site of calcification (pHbiol). C. caespitosa exhibits a linear relationship between pHsw and the shift in pH due to physiological processes (deltapH = pHbiol - pHsw) giving the regression deltapHClad = 4.80 - 0.52* pHsw for this species. We further apply this method ("deltapH-pHsw") to calibrate tropical species of Porites, Acropora, and Stylophora reported in the literature. The temperate and tropical species calibrations are all linearly correlated (r2 〉 0.9) and the biological fractionation component (deltapH) between species varies within ~ 0.2 pH units. Our "deltapH-pHsw" approach provides a robust and accurate tool to reconstruct palaeoseawater pHsw for both temperate and tropical corals, further validating the boron fractionation factor (alphaB3-B4 = 1.0272) determined experimentally by Klochko et al. (2006) and the boron isotope pH proxy, both of which have been the foci of considerable debate.
    Keywords: Alkalinity, total; Alkalinity, total, standard deviation; Aragonite saturation state; Aragonite saturation state, standard deviation; Bicarbonate ion; Bicarbonate ion, standard deviation; Boron/Calcium ratio; Boron hydroxide/Bicarbonate ratio; Calculated, see reference(s); Carbon, inorganic, dissolved; Carbon, inorganic, dissolved, standard deviation; Carbonate ion; Carbonate ion, standard deviation; Carbon dioxide; Carbon dioxide, partial pressure, standard deviation; Carbon dioxide, standard deviation; DATE/TIME; DISTANCE; EPOCA; European Project on Ocean Acidification; Experimental treatment; Measured; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); pH; pH, standard deviation; pH meter (Metrohm, 826 pH mobile); Salinity; see reference(s); Site; Species; Temperature, standard deviation; Temperature, water; Titration potentiometric; δ11B
    Type: Dataset
    Format: text/tab-separated-values, 29568 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Pretet, Chloé; Samankassou, Elias; Felis, Thomas; Reynaud, Stéphanie; Böhm, Florian; Eisenhauer, Anton; Ferrier-Pagès, Christine; Gattuso, Jean-Pierre; Camoin, Gilbert (2013): Constraining calcium isotope fractionation (d44/40Ca) in modern and fossil scleractinian coral skeleton. Chemical Geology, 340, 49-58, https://doi.org/10.1016/j.chemgeo.2012.12.006
    Publication Date: 2023-07-13
    Description: The present study investigates the influence of environmental (temperature, salinity) and biological (growth rate, inter-generic variations) parameters on calcium isotope fractionation (d44/40Ca) in scleractinian coral skeleton to better constrain this record. Previous studies focused on the d44/40Ca record in different marine organisms to reconstruct seawater composition or temperature, but only few studies investigated corals. This study presents measurements performed on modern corals from natural environments (from the Maldives for modern and from Tahiti for fossil corals) as well as from laboratory cultures (Centre Scientifique de Monaco). Measurements on Porites sp., Acropora sp., Montipora verrucosa and Stylophora pistillata allow constraining inter-generic variability. Our results show that the fractionation of d44/40Ca ranges from 0.6 to 0.1 per mil, independent of the genus or the environmental conditions. No significant relationship between the rate of calcification and d44/40Ca was found. The weak temperature dependence reported in earlier studies is most probably not the only parameter that is responsible for the fractionation. Indeed, sub-seasonal temperature variations reconstructed by d18O and Sr/Ca ratio using a multi-proxy approach, are not mirrored in the coral's d44/40Ca variations. The intergeneric variability and intrageneric variability among the studied samples are weak except for S. pistillata, which shows calcium isotopic values increasing with salinity. The variability between samples cultured at a salinity of 40 is higher than those cultured at a salinity of 36 for this species. The present study reveals a strong biological control of the skeletal calcium isotope composition by the polyp and a weak influence of environmental factors, specifically temperature and salinity (except for S. pistillata). Vital effects have to be investigated in situ to better constrain their influence on the calcium isotopic signal. If vital effects could be extracted from the isotopic signal, the calcium isotopic composition of coral skeletons could provide reliable information on the calcium composition and budget in ocean.
    Keywords: Integrated Ocean Drilling Program / International Ocean Discovery Program; IODP
    Type: Dataset
    Format: application/zip, 3 datasets
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2023-07-13
    Keywords: Salinity; Sample amount; Sample code/label; Species; δ44/40 Ca; δ44/40 Ca, standard deviation
    Type: Dataset
    Format: text/tab-separated-values, 144 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2023-07-13
    Keywords: DEPTH, water; Distance; Genus; HAND; Location; Maghoodoo; Maldives; Sample amount; Sample code/label; Sampling by hand; δ44/40 Ca; δ44/40 Ca, standard deviation
    Type: Dataset
    Format: text/tab-separated-values, 77 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2023-07-13
    Keywords: 310-M0018A; DEPTH, sediment/rock; DP Hunter; DRILL; Drilling/drill rig; DSDP/ODP/IODP sample designation; Exp310; Integrated Ocean Drilling Program / International Ocean Discovery Program; IODP; Number; Sample amount; Sample code/label; Sample ID; TAH-03A-1E; Tahiti, offshore Maraa; Tahiti Sea Level; δ44/40 Ca; δ44/40 Ca, standard deviation
    Type: Dataset
    Format: text/tab-separated-values, 150 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Godinot, Claire; Houlbrèque, Fanny; Grover, Renaud; Ferrier-Pagès, Christine (2011): Coral uptake of inorganic phosphorus and nitrogen negatively affected by simultaneous changes in temperature and pH. PLoS ONE, 6(9), e25024, https://doi.org/10.1371/journal.pone.0025024
    Publication Date: 2024-03-15
    Description: The effects of ocean acidification and elevated seawater temperature on coral calcification and photosynthesis have been extensively investigated over the last two decades, whereas they are still unknown on nutrient uptake, despite their importance for coral energetics. We therefore studied the separate and combined impacts of increases in temperature and pCO2 on phosphate, ammonium, and nitrate uptake rates by the scleractinian coral S. pistillata. Three experiments were performed, during 10 days i) at three pHT conditions (8.1, 7.8, and 7.5) and normal temperature (26°C), ii) at three temperature conditions (26°, 29°C, and 33°C) and normal pHT(8.1), and iii) at three pHT conditions (8.1, 7.8, and 7.5) and elevated temperature (33°C). After 10 days of incubation, corals had not bleached, as protein, chlorophyll, and zooxanthellae contents were the same in all treatments. However, photosynthetic rates significantly decreased at 33°C, and were further reduced for the pHT 7.5. The photosynthetic efficiency of PSII was only decreased by elevated temperature. Nutrient uptake rates were not affected by a change in pH alone. Conversely, elevated temperature (33°C) alone induced an increase in phosphate uptake but a severe decrease in nitrate and ammonium uptake rates, even leading to a release of nitrogen into seawater. Combination of high temperature (33°C) and low pHT(7.5) resulted in a significant decrease in phosphate and nitrate uptake rates compared to control corals (26°C, pHT = 8.1). These results indicate that both inorganic nitrogen and phosphorus metabolism may be negatively affected by the cumulative effects of ocean warming and acidification.
    Keywords: AA; Alkalinity, Gran titration (Gran, 1950); Alkalinity, total; Alkalinity, total, standard deviation; Animalia; Aragonite saturation state; Autoanalyzer; Benthic animals; Benthos; Bicarbonate ion; Biomass/Abundance/Elemental composition; Calcite saturation state; Calculated using seacarb after Nisumaa et al. (2010); Carbon, inorganic, dissolved; Carbonate ion; Carbonate system computation flag; Carbon dioxide; Cnidaria; Containers and aquaria (20-1000 L or 〈 1 m**2); Electron transport rate of photosystem II; EPOCA; EUR-OCEANS; European network of excellence for Ocean Ecosystems Analysis; European Project on Ocean Acidification; Fugacity of carbon dioxide (water) at sea surface temperature (wet air); Laboratory experiment; Laboratory strains; Light:Dark cycle; Maximum photochemical quantum yield of photosystem II; Nutrient uptake rate, per chlorophyll; OA-ICC; Ocean Acidification International Coordination Centre; Oxygen evolution, per chlorophyll a; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); pH; pH meter (Metrohm, 826 pH mobile); Primary production/Photosynthesis; pulse-amplitude-modulated chlorophyll fluorometry (diving PAM, Waltz, Germany); Radiation, photosynthetically active; Red Sea; Salinity; see reference(s); Single species; Spectrofluorometry; Spectrophotometry; Stylophora pistillata; Stylophora pistillata, chlorophyll; Stylophora pistillata, protein content; Stylophora pistillata, zooxanthellate cell density; Temperature; Temperature, water
    Type: Dataset
    Format: text/tab-separated-values, 10336 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Tremblay, Pascale; Fine, M; Maguer, Jean-François; Grover, Renaud; Ferrier-Pagès, Christine (2013): Photosynthate translocation increases in response to low seawater pH in a coral–dinoflagellate symbiosis. Biogeosciences, 10(6), 3997-4007, https://doi.org/10.5194/bg-10-3997-2013
    Publication Date: 2024-03-15
    Description: This study has examined the effect of low seawater pH values (induced by an increased CO2 partial pressure) on the rates of photosynthesis, as well as on the carbon budget and carbon translocation in the scleractinian coral species Stylophora pistillata, using a new model based on 13C labelling of the photosynthetic products. Symbiont photosynthesis contributes to a large part of the carbon acquisition in tropical coral species, and it is thus important to know how environmental changes affect this carbon acquisition and allocation. For this purpose, nubbins of S. pistillata were maintained for six months at two pHTs (8.1 and 7.2, by bubbling seawater with CO2). The lowest pH value was used to tackle how seawater pH impacts the carbon budget of a scleractinian coral. Rates of photosynthesis and respiration of the symbiotic association and of isolated symbionts were assessed at each pH. The fate of 13C photosynthates was then followed in the symbionts and the coral host for 48 h. Nubbins maintained at pHT 7.2 presented a lower areal symbiont concentration, and lower areal rates of gross photosynthesis and carbon incorporation compared to nubbins maintained at pHT 8.1. The total carbon acquisition was thus lower under low pH. However, the total percentage of carbon translocated to the host as well as the amount of carbon translocated per symbiont cell were significantly higher under pHT 7.2 than under pHT 8.1 (70% at pHT 7.2 vs. 60% at pHT 8.1), such that the total amount of photosynthetic carbon received by the coral host was equivalent under both pHs (5.5 to 6.1 µg C/cm**2/h). Although the carbon budget of the host was unchanged, symbionts acquired less carbon for their own needs (0.6 compared to 1.8 µg C/cm**2/h), explaining the overall decrease in symbiont concentration at low pH. In the long term, such decrease in symbiont concentration might severely affect the carbon budget of the symbiotic association.
    Keywords: Alkalinity, total; Animalia; Aragonite saturation state; Benthic animals; Benthos; Bicarbonate ion; Calcite saturation state; Calculated using CO2SYS; Calculated using seacarb after Nisumaa et al. (2010); Carbon, incorporated; Carbon, inorganic, dissolved; Carbon, lost; Carbon, translocated; Carbonate ion; Carbonate system computation flag; Carbon dioxide; Cell density; Chlorophyll a; Chlorophyll c2; Cnidaria; Coast and continental shelf; Containers and aquaria (20-1000 L or 〈 1 m**2); Fugacity of carbon dioxide (water) at sea surface temperature (wet air); Gross photosynthesis rate, carbon dioxide; Laboratory experiment; OA-ICC; Ocean Acidification International Coordination Centre; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); Percentage; pH; Potentiometric; Primary production/Photosynthesis; Proteins; Red Sea; Respiration; Respiration rate, carbon dioxide; Salinity; Sample ID; Single species; Species; Stylophora pistillata; Temperate; Temperature, water
    Type: Dataset
    Format: text/tab-separated-values, 1033 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2024-03-15
    Description: Atmospheric CO2 partial pressure (pCO2) is expected to increase to 700 µatm or more by the end of the present century. Anthropogenic CO2 is absorbed by the oceans, leading to decreases in pH and the CaCO3 saturation state of the seawater. Elevated pCO2 was shown to drastically decrease calcification rates in tropical zooxanthellate corals. Here we show, using the Mediterranean zooxanthellate coral Cladocora caespitosa, that an increase in pCO2, in the range predicted for 2100, does not reduce its calcification rate. Therefore, the conventional belief that calcification rates will be affected by ocean acidification may not be widespread in temperate corals. Seasonal change in temperature is the predominant factor controlling photosynthesis, respiration, calcification and symbiont density. An increase in pCO2, alone or in combination with elevated temperature, had no significant effect on photosynthesis, photosynthetic efficiency and calcification. The lack of sensitivity C. caespitosa to elevated pCO2 might be due to its slow growth rates, which seem to be more dependent on temperature than on the saturation state of calcium carbonate in the range projected for the end of the century.
    Keywords: Alkalinity, total; Alkalinity anomaly technique (Smith and Key, 1975); Animalia; Aragonite saturation state; BCA assay, Intact protein analyses (Smith et al., 1985); Benthic animals; Benthos; Bicarbonate ion; Buoyant weighing technique according to Davies (1989); Calcification/Dissolution; Calcification rate of calcium carbonate; Calcite saturation state; Calculated; Calculated after Jeffrey & Humphrey (1975); Calculated using seacarb after Nisumaa et al. (2010); Carbon, inorganic, dissolved; Carbonate ion; Carbonate system computation flag; Carbon dioxide; Chlorophyll a+c2; Cladocora caespitosa; Cnidaria; Coast and continental shelf; Containers and aquaria (20-1000 L or 〈 1 m**2); DATE/TIME; EPOCA; European Project on Ocean Acidification; Experimental treatment; Gross photosynthesis; Identification; Laboratory experiment; Measured; Mediterranean Sea; Metrohm 665 Dosimat titrator; Microscopy; Net photosynthesis rate; OA-ICC; Ocean Acidification International Coordination Centre; Other studied parameter or process; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); pH; pH meter (Metrohm, 826 pH mobile); Photosynthetic efficiencies; Primary production/Photosynthesis; Proteins; Pulse Amplitude Modulated fluorometer (Diving-PAM, Walz); Respiration; Respiration, oxygen; Salinity; Sample ID; Single species; Strathkelvin oxygen electrode system; Temperate; Temperature; Temperature, water; Zooxanthellae
    Type: Dataset
    Format: text/tab-separated-values, 12601 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2024-03-15
    Description: Many studies have investigated the effect of an increase in pCO2 on coral calcification and photosynthesis but the physiological consequences are still relatively speculative. We investigated the effects of ocean acidification on zinc incorporation and gross calcification in the scleractinian coral Stylophora pistillata. Zn is an essential element for health and growth of corals. Colonies were maintained at normal pHT (8.1) and at two low-pH conditions (7.8 and 7.5) during 5 weeks. Corals were exposed to 65Zn dissolved in seawater to assess uptake rates of this element. After 5 weeks, 65Zn activity measured in the whole coral and in the two compartments: tissue and skeleton, differed significantly between pH conditions with concentration factors higher at pHT 8.1, compared to lower pH. Zn is therefore taken less efficiently by corals at reduced pH. Their gross calcification, as measured by 45Ca incorporation, photosynthesis and photosynthetic efficiency did not change with pH even at the lowest level.
    Keywords: Alkalinity, Gran titration (Gran, 1950); Alkalinity, total; Animalia; Aragonite saturation state; Benthic animals; Benthos; Bicarbonate ion; Calcification/Dissolution; Calcite saturation state; Calculated using seacarb after Nisumaa et al. (2010); Calculated using SYSTAT; Carbon, inorganic, dissolved; Carbonate ion; Carbonate system computation flag; Carbon dioxide; Cnidaria; DATE/TIME; Determined using a high-resolution spectrometry system consisting of four coaxia; EPOCA; EUR-OCEANS; European network of excellence for Ocean Ecosystems Analysis; European Project on Ocean Acidification; Experimental treatment; Experiment day; Fugacity of carbon dioxide (water) at sea surface temperature (wet air); Gross calcification rate of calcium carbonate; Laboratory experiment; Measured after Tambutté et al. (1995); Other metabolic rates; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); pH; pH meter (Metrohm, 826 pH mobile); Salinity; Single species; Stylophora pistillata; Temperature, water; Zinc-65, inc uptake kinetics
    Type: Dataset
    Format: text/tab-separated-values, 3219 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...