GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    Newark :John Wiley & Sons, Incorporated,
    Keywords: Geobiology. ; Biosphere. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (481 pages)
    Edition: 1st ed.
    ISBN: 9781118280867
    DDC: 508
    Language: English
    Note: Intro -- FUNDAMENTALS OF GEOBIOLOGY -- Contents -- Contributors -- 1. What is Geobiology? -- 1.1 Introduction -- 1.2 Life interacting with the Earth -- 1.3 Pattern and process in geobiology -- 1.4 New horizons in geobiology -- References -- 2. The Global Carbon Cycle: Biological Processes -- 2.1 Introduction -- 2.2 A brief primer on redox reactions -- 2.3 Carbon as a substrate for biological reactions -- 2.4 The evolution of photosynthesis -- 2.5 The evolution of oxygenic phototrophs -- 2.6 Net primary production -- 2.7 What limits NPP on land and in the ocean? -- 2.8 Is NPP in balance with respiration? -- 2.9 Conclusions and extensions -- References -- 3. The Global Carbon Cycle: Geological Processes -- 3.1 Introduction -- 3.2 Organic carbon cycling -- 3.3 Carbonate cycling -- 3.4 Mantle degassing -- 3.5 Metamorphism -- 3.6 Silicate weathering -- 3.7 Feedbacks -- 3.8 Balancing the geological carbon cycle -- 3.9 Evolution of the geological carbon cycle through Earth's history: proxies and models -- 3.10 The geological C cycle through time -- 3.11 Limitations and perspectives -- References -- 4. The Global Nitrogen Cycle -- 4.1 Introduction -- 4.2 Geological nitrogen cycle -- 4.3 Components of the global nitrogen cycle -- 4.4 Nitrogen redox chemistry -- 4.5 Biological reactions of the nitrogen cycle -- 4.6 Atmospheric nitrogen chemistry -- 4.7 Summary and areas for future research -- References -- 5. The Global Sulfur Cycle -- 5.1 Introduction -- 5.2 The global sulfur cycle from two perspectives -- 5.3 The evolution of S metabolisms -- 5.4 The interaction of S with other biogeochemical cycles -- 5.5 The evolution of the S cycle -- 5.6 Closing remarks -- Acknowledgements -- References -- 6. The Global Iron Cycle -- 6.1 Overview -- 6.2 The inorganic geochemistry of iron: redox and reservoirs -- 6.3 Iron in modern biology and biogeochemical cycles. , 6.4 Iron through time -- 6.5 Summary -- Acknowledgements -- References -- 7. The Global Oxygen Cycle -- 7.1 Introduction -- 7.2 The chemistry and biochemistry of oxygen -- 7.3 The concept of redox balance -- 7.4 The modern O2 cycle -- 7.5 Cycling of O2 and H2 on the early Earth -- 7.6 Synthesis: speculations about the timing and cause of the rise of atmospheric O2 -- References -- 8. Bacterial Biomineralization -- 8.1 Introduction -- 8.2 Mineral nucleation and growth -- 8.3 How bacteria facilitate biomineralization -- 8.4 Iron oxyhydroxides -- 8.5 Calcium carbonates -- Acknowledgements -- References -- 9. Mineral-Organic-Microbe Interfacial Chemistry -- 9.1 Introduction -- 9.2 The mineral surface (and mineral-bio interface) and techniques for its study -- 9.3 Mineral-organic-microbe interfacial processes: some key examples -- Acknowledgements -- References -- 10. Eukaryotic Skeletal Formation -- 10.1 Introduction -- 10.2 Mineralization by unicellular organisms -- 10.3 Mineralization by multicellular organisms -- 10.4 A brief history of skeletons -- 10.5 Summary -- Acknowledgements -- References -- 11. Plants and Animals as Geobiological Agents -- 11.1 Introduction -- 11.2 Land plants as geobiological agents -- 11.3 Animals as geobiological agents -- 11.4 Conclusions -- Acknowledgements -- References -- 12. A Geobiological View of Weathering and Erosion -- 12.1 Introduction -- 12.2 Effects of biota on weathering -- 12.3 Effects of organic molecules on weathering -- 12.4 Organomarkers in weathering solutions -- 12.5 Elemental profiles in regolith -- 12.6 Time evolution of profile development -- 12.7 Investigating chemical, physical, and biological weathering with simple models -- 12.8 Conclusions -- Acknowledgements -- References -- 13. Molecular Biology's Contributions to Geobiology -- 13.1 Introduction -- 13.2 Molecular approaches used in geobiology. , 13.3 Case study: anaerobic oxidation of methane -- 13.4 Challenges and opportunities for the next generation -- Acknowledgements -- References -- 14. Stable Isotope Geobiology -- 14.1 Introduction -- 14.2 Isotopic notation and the biogeochemical elements -- 14.3 Tracking fractionation in a system -- 14.4 Applications -- 14.5 Using isotopes to ask a geobiological question in deep time -- 14.6 Conclusions -- Acknowledgements -- References -- 15. Biomarkers: Informative Molecules for Studies in Geobiology -- 15.1 Introduction -- 15.2 Origins of biomarkers -- 15.3 Diagenesis -- 15.4 Isotopic compositions -- 15.5 Stereochemical considerations -- 15.6 Lipid biosynthetic pathways -- 15.7 Classification of lipids -- 15.8 Lipids diagnostic of Archaea -- 15.9 Lipids diagnostic of Bacteria -- 15.10 Lipids of Eukarya -- 15.11 Preservable cores -- 15.12 Outlook -- Acknowledgements -- References -- 16. The Fossil Record of Microbial Life -- 16.1 Introduction -- 16.2 The nature of Earth's early microbial record -- 16.3 Paleobiological inferences from microfossil morphology -- 16.4 Inferences from microfossil chemistry and ultrastructure (new technologies) -- 16.5 Inferences from microbialites -- 16.6 A brief history, with questions -- 16.7 Conclusions -- Acknowledgements -- References -- 17. Geochemical Origins of Life -- 17.1 Introduction -- 17.2 Emergence as a unifying concept in origins research -- 17.3 The emergence of biomolecules -- 17.4 The emergence of macromolecules -- 17.5 The emergence of self-replicating systems -- 17.6 The emergence of natural selection -- 17.7 Three scenarios for the origins of life -- Acknowledgements -- References -- 18. Mineralogical Co-evolution of the Geosphere and Biosphere -- 18.1 Introduction -- 18.2 Prebiotic mineral evolution I - evidence from meteorites -- 18.3 Prebiotic mineral evolution II - crust and mantle reworking. , 18.4 The anoxic Archean biosphere -- 18.5 The Great Oxidation Event -- 18.6 A billion years of stasis -- 18.7 The snowball Earth -- 18.8 The rise of skeletal mineralization -- 18.9 Summary -- Acknowledgements -- References -- 19. Geobiology of the Archean Eon -- 19.1 Introduction -- 19.2 Carbon cycle -- 19.3 Sulfur cycle -- 19.4 Iron cycle -- 19.5 Oxygen cycle -- 19.6 Nitrogen cycle -- 19.7 Phosphorus cycle -- 19.8 Bioaccretion of sediment -- 19.9 Bioalteration -- 19.10 Conclusions -- References -- 20. Geobiology of the Proterozoic Eon -- 20.1 Introduction -- 20.2 The Great Oxidation Event -- 20.3 The early Proterozoic: Era geobiology in the wake of the GOE -- 20.4 The mid-Proterozoic: a last gasp of iron formations, deep ocean anoxia, the 'boring' billion, and a mid-life crisis -- 20.5 The history of Proterozoic life: biomarker records -- 20.6 The history of Proterozoic life: mid-Proterozoic fossil record -- 20.7 The late Proterozoic: a supercontinent, oxygen, ice, and the emergence of animals -- 20.8 Summary -- Acknowledgements -- References -- 21. Geobiology of the Phanerozoic -- 21.1 The beginning of the Phanerozoic Eon -- 21.2 Cambrian mass extinctions -- 21.3 The terminal Ordovician mass extinction -- 21.4 The impact of early land plants -- 21.5 Silurian biotic crises -- 21.6 Devonian mass extinctions -- 21.7 Major changes of the global ecosystem in Carboniferous time -- 21.8 Low-elevation glaciation near the equator -- 21.9 Drying of climates -- 21.10 A double mass extinction in the Permian -- 21.11 The absence of recovery in the early Triassic -- 21.12 The terminal Triassic crisis -- 21.13 The rise of atmospheric oxygen since early in Triassic time -- 21.14 The Toarcian anoxic event -- 21.15 Phytoplankton, planktonic foraminifera, and the carbon cycle -- 21.16 Diatoms and the silica cycle -- 21.17 Cretaceous climates. , 21.18 The sudden Paleocene-Eocene climatic shift -- 21.19 The cause of the Eocene-Oligocene climatic shift -- 21.20 The re-expansion of reefs during Oligocene time -- 21.21 Drier climates and cascading evolutionary radiations on the land -- References -- 22. Geobiology of the Anthropocene -- 22.1 Introduction -- 22.2 The Anthropocene -- 22.3 When did the Anthropocene begin? -- 22.4 Geobiology and human population -- 22.5 Human appropriation of the Earth -- 22.6 The carbon cycle and climate of the Anthropocene -- 22.7 The future of geobiology -- Acknowledgements -- References -- Index -- Colour plates.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Book
    Book
    Chichester [u.a.] : Wiley-Blackwell
    Keywords: Geobiology ; Lehrbuch ; Geobiologie ; Biogeochemie ; Biomineralisation ; Nährstoffhaushalt ; Geomikrobiologie ; Geobiologie
    Type of Medium: Book
    Pages: XII, 443 S. , Ill., graph. Darst.
    Edition: 1. publ.
    ISBN: 9781405187527 , 9781118280812
    DDC: 577
    RVK:
    RVK:
    Language: English
    Note: Hier auch später erschienene, unveränderte Nachdrucke
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2015-07-02
    Description: In the last two decades, the widespread application of genetic and genomic approaches has revealed a bacterial world astonishing in its ubiquity and diversity. This review examines how a growing knowledge of the vast range of animal-bacterial interactions, whether in shared ecosystems or intimate symbioses, is fundamentally altering our understanding of animal biology. Specifically, we highlight recent technological and intellectual advances that have changed our thinking about five questions: how have bacteria facilitated the origin and evolution of animals; how do animals and bacteria affect each other's genomes; how does normal animal development depend on bacterial partners; how is homeostasis maintained between animals and their symbionts; and how can ecological approaches deepen our understanding of the multiple levels of animal-bacterial interaction. As answers to these fundamental questions emerge, all biologists will be challenged to broaden their appreciation of these interactions and to include investigations of the relationships between and among bacteria and their animal partners as we seek a better understanding of the natural world.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2011-09-01
    Description: Abundant and diverse microfossils from shales of the uppermost Ura Formation, central Siberia, document early to middle Ediacaran life along the southeastern margin of the Siberian Platform. The Ura Formation is well exposed in a series of sections in the Lena River basin but the best microfossil assemblages come from a locality along the Ura River. Here, the uppermost twenty meters of the formation contain diverse microfossils exceptionally well preserved as organic compressions. Fossils include nearly two dozen morphospecies of large acanthomorphic microfossils attributable to the Ediacaran Complex Acanthomorph Palynoflora (ECAP), a distinctive assemblage known elsewhere only from lower, but not lowermost, to middle Ediacaran rocks. Discovery of ECAP in strata previously considered Mesoproterozoic through Cryogenian confirms inferences from chemostratigraphy, dramatically changing stratigraphic interpretation of sedimentary successions and Proterozoic tectonics on the Siberian Platform. Systematic paleontology is reported for 36 taxa (five described informally) assigned to 23 genera of both eukaryotic and prokaryotic microfossils. One new genus and two new species are proposed: Ancorosphaeridium magnum n. gen. n. sp. and A. minor n. gen. n. sp.
    Print ISSN: 0022-3360
    Electronic ISSN: 1937-2337
    Topics: Geosciences
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2011-07-01
    Description: Progress in understanding mineral evolution, Earth's changing near-surface mineralogy through time, depends on the availability of detailed information on mineral localities of known ages and geologic settings. A comprehensive database including this information, employing the mindat.org web site as a platform, is now being implemented. This resource will incorporate software to correlate a range of mineral occurrences and properties vs. time, and it will thus facilitate studies of the changing diversity, distribution, associations, and characteristics of individual minerals as well as mineral groups. The Mineral Evolution Database thus holds the prospect of revealing mineralogical records of important geophysical, geochemical, and biological events in Earth history.
    Print ISSN: 0003-004X
    Electronic ISSN: 1945-3027
    Topics: Geosciences
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2012-04-01
    Description: Valley-filling deposits of the Nama Group, southern Namibia, record two episodes of erosional downcutting and backfill, developed close together in time near the Ediacaran-Cambrian boundary. Geochronological constraints indicate that the older valley fill began 539.4 ± 1 Ma or later; the younger of these deposits contains unusually well-preserved populations of the basal Cambrian trace fossil Treptichnus pedum. Facies analysis shows that T. pedum is closely linked to a nearshore sandstone deposit, indicating a close environmental or taphonomic connection to very shallow, mud-draped sandy seafloor swept by tidal currents. Facies restriction may limit the biostratigraphic potential of T. pedum in Namibia and elsewhere, but it also illuminates functional and ecological interpretation. The T. pedum tracemaker was a motile bilaterian animal that lived below the sediment-water interface—propelling itself forward in upward-curving projections that breached the sediment surface. The T. pedum animal, therefore, lived infaunally, perhaps to avoid predation, surfacing regularly to feed and take in oxygen. Alternatively, the T. pedum animal may have been a deposit feeder that surfaced largely for purposes of gas exchange, an interpretation that has some support in the observed association of T. pedum with mud drapes. Treptichnus pedum provides our oldest record of animals that combined anatomical and behavioral complexity. Insights from comparative biology suggest that basal Cambrian T. pedum animals already possessed the anatomical, neurological, and genetic complexity needed to enable the body plan and behavioral diversification recorded by younger Cambrian fossils.
    Print ISSN: 0883-1351
    Electronic ISSN: 0883-1351
    Topics: Geosciences
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...