GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2015-2019  (12)
Document type
Keywords
Years
Year
  • 1
    Publication Date: 2021-02-08
    Description: The Kryos Basin is a deep-sea hypersaline anoxic basin (DHAB) located in the Eastern Mediterranean Sea (34.98°N 22.04°E). It is filled with brine of re-dissolved Messinian evaporites and is nearly saturated with MgCl2-equivalents, which makes this habitat extremely challenging for life. The strong density difference between the anoxic brine and the overlying oxic Mediterranean seawater impedes mixing, giving rise to a narrow chemocline. Here, we investigate the microbial community structure and activities across the seawater–brine interface using a combined biogeochemical, next-generation sequencing, and lipid biomarker approach. Within the interface, we detected fatty acids that were distinctly 13C-enriched when compared to other fatty acids. These likely originated from sulfide-oxidizing bacteria that fix carbon via the reverse tricarboxylic acid cycle. In the lower part of the interface, we also measured elevated rates of methane oxidation, probably mediated by aerobic methanotrophs under micro-oxic conditions. Sulfate reduction rates increased across the interface and were highest within the brine, providing first evidence that sulfate reducers (likely Desulfovermiculus and Desulfobacula) thrive in the Kryos Basin at a water activity of only ~0.4 Aw. Our results demonstrate that a highly specialized microbial community in the Kryos Basin has adapted to the poly-extreme conditions of a DHAB with nearly saturated MgCl2 brine, extending the known environmental range where microbial life can persist.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2020-02-06
    Description: The microbial community response to petroleum seepage was investigated in a whole round sediment core (16 cm length) collected nearby natural hydrocarbon seepage structures in the Caspian Sea, using a newly developed Sediment-Oil-Flow-Through (SOFT) system. Distinct redox zones established and migrated vertically in the core during the 190 days-long simulated petroleum seepage. Methanogenic petroleum degradation was indicated by an increase in methane concentration from 8 μM in an untreated core compared to 2300 μM in the lower sulfate-free zone of the SOFT core at the end of the experiment, accompanied by a respective decrease in the δ13C signal of methane from -33.7 to -49.5‰. The involvement of methanogens in petroleum degradation was further confirmed by methane production in enrichment cultures from SOFT sediment after the addition of hexadecane, methylnapthalene, toluene, and ethylbenzene. Petroleum degradation coupled to sulfate reduction was indicated by the increase of integrated sulfate reduction rates from 2.8 SO42-m-2 day-1 in untreated cores to 5.7 mmol SO42-m-2 day-1 in the SOFT core at the end of the experiment, accompanied by a respective accumulation of sulfide from 30 to 447 μM. Volatile hydrocarbons (C2–C6 n-alkanes) passed through the methanogenic zone mostly unchanged and were depleted within the sulfate-reducing zone. The amount of heavier n-alkanes (C10–C38) decreased step-wise toward the top of the sediment core and a preferential degradation of shorter (〈C14) and longer chain n-alkanes (〉C30) was seen during the seepage. This study illustrates, to the best of our knowledge, for the first time the development of methanogenic petroleum degradation and the succession of benthic microbial processes during petroleum passage in a whole round sediment core.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2020-02-06
    Description: Anaerobic microbial hydrocarbon degradation is a major biogeochemical process at marine seeps. Here we studied the response of the microbial community to petroleum seepage simulated for 190 days in a sediment core from the Caspian Sea using a sediment-oil-flow-through (SOFT) system. Untreated (without simulated petroleum seepage) and SOFT sediment microbial communities shared 43% bacterial genuslevel 16S rRNA-based operational taxonomic units (OTU0:945) but shared only 23% archaeal OTU0:945. The community differed significantly between sediment layers. The detection of fourfold higher deltaproteobacterial cell numbers in SOFT than in untreated sediment at depths characterized by highest sulfate reduction rates and strongest decrease of gaseous and mid-chain alkane concentrations indicated a specific response of hydrocarbon-degrading Deltaproteobacteria. Based on an increase in specific CARD-FISH cell numbers, we suggest the following groups of sulfate-reducing bacteria to be likely responsible for the observed decrease in aliphatic and aromatic hydrocarbon concentration in SOFT sediments: clade SCA1 for propane and butane degradation, clade LCA2 for mid- to long-chain alkane degradation, clade Cyhx for cycloalkanes, pentane and hexane degradation, and relatives of Desulfobacula for toluene degradation. Highest numbers of archaea of the genus Methanosarcina were found in the methanogenic zone of the SOFT core where we detected preferential degradation of long-chain hydrocarbons. Sequencing of masD, a marker gene for alkane degradation encoding (1-methylalkyl)succinate synthase, revealed a low diversity in SOFT sediment with two abundant species-level MasD OTU0:96.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Musat, Niculina; Werner, Ursula; Knittel, Katrin; Kolb, Steffen; Dodenhof, Tanja; van Beusekom, Justus; de Beer, Dirk; Dubilier, Nicole; Amann, Rudolf (2006): Microbial community structure of sandy intertidal sediments in the North Sea, Sylt-Rømø Basin, Wadden Sea. Systematic and Applied Microbiology, 29(4), 333-348, https://doi.org/10.1016/j.syapm.2005.12.006
    Publication Date: 2023-07-10
    Description: Molecular biological methods were used to investigate the microbial diversity and community structure in intertidal sandy sediments near the island of Sylt (Wadden Sea) at a site which was characterized for transport and mineralization rates in de Beer et al., (2005, hdl:10013/epic.21375). The sampling was performed during low tide in the middle of the flat, approximately 40 m in the offshore direction from the high water line on October 6, 1999, March 7, 2000, and July 5, 2000. Two parallel cores were collected from each season for molecular analyses. Within 2 h after sampling the sediment cores were sub-sampled and fixed in formaldehyde for FISH analysis. The cells were hybridized, stained with 4',6'-diamidino-2-phenylindole (DAPI) and microscopically counted as described previously [55]. Details of probes and formamide concentrations which were used are shown in further details. Counts are reported as means calculated from 10-15 randomly chosen microscopic fields corresponding to 700-1000 DAPI-stained cells. Values were corrected for the signals counted with the probe NON338. Fluorescence in situ hybridization (FISH)with group-specific rRNA-targeted oligonucleotide probes were used to characterize the microbial community structure over depth (0-12 cm) and seasons (March, July, October). We found high abundances of bacteria with total cell numbers up to 3×109 cells ml-1 and a clear seasonal variation, with higher values in July and October versus March. The microbial community was dominated by members of the Planctomycetes, the Cytophaga/Flavobacterium group, Gammaproteobacteria, and bacteria of the Desulfosarcina/Desulfococcus group. The high abundance (1.5×10**7 - 1.8×10**8 cells/ml accounting for 3-19% of all cells) of presumably aerobic heterotrophic polymer-degrading planctomycetes is in line with the high permeability, deep oxygen penetration, and the high rates of aerobic mineralization of algal biomass measured in the sandy sediments by de Beer et al., (2005, hdl:10013/epic.21375). The high and stable abundance of members of the Desulfosarcina/Desulfococcus group, both over depth and season, suggests that these bacteria may play a more important role than previously assumed based on low sulfate reduction rates in parallel cores de Beer et al., (2005).
    Keywords: Bacteria, targeted with EUB338 l oligonucleotides FISH-probe; Core; CORE; Cytophaga-Flavobacterium cluster, targeted with CF319a oligonucleotide FISH-probe; Date/Time of event; DEPTH, sediment/rock; Desulfusarcina/Desulfococcus, targeted with DSS658 oligonucleotide FISH-probe; Epifluorescence microscopy after DAPI staining; Event label; Fluorescence in situ hybridization (FISH); Gammaproteobacteria, targeted with Gam42a oligonucleotide FISH-probe; Latitude of event; Longitude of event; Planctomycetales, targeted with PLA886 oligonucleotide FISH-probe; Prokaryotes, number of cell; WaddenSea_Sylt-03-2000; WaddenSea_Sylt-06-1999; WaddenSea_Sylt-07-2000; WaddenSea_Sylt-10-1999; Wadden Sea, North Sea, Germany
    Type: Dataset
    Format: text/tab-separated-values, 362 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2024-02-16
    Description: Gullfaks is one of the four major Norwegian oil and gas fields, located in the northeastern edge of the North Sea Plateau. Tommeliten lies in the greater Ekofisk area in the central North Sea. During the cruises HE 208 and AL 267 several seep locations of the North Sea were visited. At the Heincke seep at Gullfaks, sediments were sampled in May 2004 (HE 208) using a video-guided multiple corer system (MUC; Octopus, Kiel). The samples were recovered from an area densely covered with bacterial mats where gas ebullition was observed. The coarse sands limited MUC penetration depth to maximal 30 centimeters and the highly permeable sands did not allow for a high-resolution, vertical subsampling because of pore water loss. The gas flare mapping and videographic observation at Tommeliten indicated an area of gas emission with a few small patches of bacterial mats with diameters 〈50 cm from most of which a single stream of gas bubbles emerged. The patches were spaced apart by 10-100 m. Sampling of sediments covered by bacterial mats was only possible with 3 small push cores (3.8 cm diameter) mounted to ROV Cherokee. These cores were sampled in 3 cm intervals. Lipid biomarker extraction from 10 -17 g wet sediment was carried out as described in detail elsewhere (Elvert et al., 2003; doi:10.1080/01490450303894). Briefly, defined concentrations of cholestane, nonadecanol and nonadecanolic acid with known delta 13C-values were added to the sediments prior to extraction as internal standards for the hydrocarbon, alcohol and fatty acid fraction, respectively. Total lipid extracts were obtained from the sediment by ultrasonification with organic solvents of decreasing polarity. Esterified fatty acids (FAs) were cleaved from the glycerol head group by saponification with methanolic KOH solution. From this mixture, the neutral fraction was extracted with hexane. After subsequent acidification, FAs were extracted with hexane. For analysis, FAs were methylated using BF3 in methanol yielding fatty acid methyl esters (FAMES). The fixation for total cell counts and CARD-FISH were performed on-board directly after sampling. For both methods, sediments were fixed in formaldehyde solution. After two hours, aliquots for CARD-FISH staining were washed with 1* PBS (10mmol/l sodium phosphate solution, 130mmol/l NaCl, adjusted to a pH of 7.2) and finally stored in a 1:1 PBS:ethanol solution at -20°C until further processing. Samples for total cell counts were stored in formalin at 4°C until analysis. For sandy samples, the total cell count/CARD-FISH protocol was optimized to separate sand particles from the cells. Cells were dislodged from sediment grains and brought into solution with the supernatant by sonicating each sample onice for 2 minutes at 50W. This procedure was repeated four times and supernatants were combined. The sediment samples were brought to a final dilution of 1:2000 to 1:4000 and filtered onto 0.2µm GTTP filters (Millipore, Eschbonn, Germany).
    Type: Dataset
    Format: application/zip, 2 datasets
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2024-02-16
    Keywords: 10-methyl-Hexadecanoic acid; 10-methyl-Hexadecanoic acid, δ13C; AL267; AL267_1274-MUC; Alkor (1990); anteiso-fatty acid C15:0; anteiso-fatty acid C15:0, δ13C; anteiso-fatty acid C17:0; anteiso-fatty acid C17:0, δ13C; Archaeol; Archaeol, δ13C; Bishomohopanol, δ13C; cy-fatty acids C17:0w5,6; cy-fatty acids C17:0w5,6, δ13C; Date/Time of event; Depth, bottom/max; DEPTH, sediment/rock; Depth, top/min; Diplopterol; Diplopterol, δ13C; Event label; fatty acid C16:1w5; fatty acid C16:1w5cis; fatty acid C18:1w7cis; fatty acid C18:1w9cis; Gas chromatography; HE180; HE180/1904; HE208; HE208/766; Heincke; iso-fatty acid C15:0; iso-fatty acid C15:0, δ13C; iso-fatty acid C17:0; iso-fatty acid C17:0, δ13C; Isoprene-fatty acid C19:0; Isoprene-fatty acid C19:0, δ13C; Kvitebjorn; Latitude of event; Longitude of event; MUC; MultiCorer; Multicorer with television; n-fatty acid C14:0; n-fatty acid C14:0, δ13C; n-fatty acid C15:0; n-fatty acid C15:0, δ13C; n-fatty acid C16:0; n-fatty acid C16:0, δ13C; n-fatty acid C16:1w7cis, δ13C; n-fatty acid C17:0, δ13C; n-fatty acid C18:0; n-fatty acid C18:0, δ13C; n-fatty acid C18:1w7cis, δ13C; n-fatty acid C18:1w9cis, δ13C; North Sea; Sample comment; sn2-Hydroxyarchaeol; sn2-Hydroxyarchaeol, δ13C; TVMUC; VC; Vibro corer
    Type: Dataset
    Format: text/tab-separated-values, 105 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2024-02-16
    Keywords: AL267; AL267_1274-MUC; Alkor (1990); Anaerobic methanotrophic archaea-1, targeted with ANME-1-350 oligonucleotide FISH-probe; Anaerobic methanotrophic archaea-2a, targeted with ANME-2a-647 oligonucleotide FISH-probe; Anaerobic methanotrophic archaea-2a, targeted with ANME-2c-622 oligonucleotide FISH-probe; Anaerobic methanotrophic archaea-3, targeted with ANME-3-1249 oligonucleotide FISH-probe; Archaea; Area/locality; Bacteria; Catalysed reporter deposition-fluorescence in situ hybridization (CARD-FISH); Date/Time of event; Depth, bottom/max; DEPTH, sediment/rock; Depth, top/min; Desulfusarcina/Desulfococcus, targeted with DSS658 oligonucleotide FISH-probe; Event label; HE208; HE208/766; HE208/771; Heincke; Kvitebjorn; Latitude of event; Longitude of event; MUC; MultiCorer; Multicorer with television; North Sea; Prokaryotes, abundance as single cells; Sample comment; Standard deviation; TVMUC
    Type: Dataset
    Format: text/tab-separated-values, 161 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Knittel, Katrin; Lösekann, Tina; Boetius, Antje; Kort, Renate; Amann, Rudolf (2005): Diversity and Distribution of Methanotrophic Archaea at Cold Seeps. Applied and Environmental Microbiology, 71(1), 467-479, https://doi.org/10.1128/AEM.71.1.467-479.2005
    Publication Date: 2024-04-18
    Description: The microbially mediated anaerobic oxidation of methane (AOM) is the major biological sink of the greenhouse gas methane in marine sediments (doi:10.1007/978-94-009-0213-8_44) and serves as an important control for emission of methane into the hydrosphere. The AOM metabolic process is assumed to be a reversal of methanogenesis coupled to the reduction of sulfate to sulfide involving methanotrophic archaea (ANME) and sulfate-reducing bacteria (SRB) as syntrophic partners which were describes amongst others in Boetius et al. (2000; doi:10.1038/35036572). In this study, 16S rRNA-based methods were used to investigate the distribution and biomass of archaea in samples from sediments above outcropping methane hydrate at Hydrate Ridge (Cascadia margin off Oregon) and (ii) massive microbial mats enclosing carbonate reefs (Crimea area, Black Sea). Sediment samples from Hydrate Ridge were obtained during R/V SONNE cruises SO143-2 in August 1999 and SO148-1 in August 2000 at the crest of southern Hydrate Ridge at the Cascadia convergent margin off the coast of Oregon. The second study area is located in the Black Sea and represents a field in which there is active seepage of free gas on the slope of the northwestern Crimea area. Here, a field of conspicuous microbial reefs forming chimney-like structures was discovered at a water depth of 230 m in anoxic waters. The microbial mats were sampled by using the manned submersible JAGO during the R/V Prof. LOGACHEV cruise in July 2001. At Hydrate Ridge the surface sediments were dominated by aggregates consisting of ANME-2 and members of the Desulfosarcina-Desulfococcus branch (DSS) (ANME-2/DSS aggregates), which accounted for 〉90% of the total cell biomass. The numbers of ANME-1 cells increased strongly with depth; these cells accounted 1% of all single cells at the surface and more than 30% of all single cells (5% of the total cells) in 7- to 10-cm sediment horizons that were directly above layers of gas hydrate. In the Black Sea microbial mats ANME-1 accounted for about 50% of all cells. ANME-2/DSS aggregates occurred in microenvironments within the mat but accounted for only 1% of the total cells. FISH probes for the ANME-2a and ANME-2c subclusters were designed based on a comparative 16S rRNA analysis. In Hydrate Ridge sediments ANME-2a/DSS and ANME-2c/DSS aggregates differed significantly in morphology and abundance. The relative abundance values for these subgroups were remarkably different at Beggiatoa sites (80% ANME-2a, 20% ANME-2c) and Calyptogena sites (20% ANME-2a, 80% ANME-2c), indicating that there was preferential selection of the groups in the two habitats.
    Keywords: Anaerobic methanotrophic archaea-1, targeted with ANME-1-350 oligonucleotide FISH-probe; Cascadia Margin; Date/Time of event; DEPTH, water; Event label; Fluorescence in situ hybridization (FISH); Habitat; Latitude of event; Longitude of event; Multicorer with television; SO143_105-1; SO143_139; SO143_185-1; SO143/2; SO148/1; SO148/1_19-2; SO148/1_38; SO148/1_51; Sonne; Standard deviation; TECFLUX I; TECFLUX II; TVMUC; TV-MUC-10; TV-MUC-12; TV-MUC-6
    Type: Dataset
    Format: text/tab-separated-values, 156 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Knittel, Katrin; Boetius, Antje; Lemke, Andreas; Eilers, Heike; Lochte, Karin; Pfannkuche, Olaf; Linke, Peter; Amann, Rudolf (2003): Activity, distribution, and diversity of sulfate reducers and other bacteria in sediments above gas hydrate (Cascadia Margin, Oregon). Geomicrobiology Journal, 20(4), 269-294, https://doi.org/10.1080/01490450303896
    Publication Date: 2024-04-18
    Description: Cold seep environments such as sediments above outcropping hydrate at Hydrate Ridge (Cascadia margin off Oregon) are characterized by methane venting, high sulfide fluxes caused by the anaerobic oxidation of methane, and the presence of chemosynthetic communities. This investigation deals with the diversity and distribution of sulfate-reducing bacteria, some of which are directly involved in the anaerobic oxidation of methane as syntrophic partners of the methanotrophic archaea. The composition and activity of the microbial communities at methane vented and nonvented sediments are compared by quantitative methods including total cell counts, fluorescence in situ hybridization (FISH). Bacteria involved in the degradation of particulate organic carbon (POC) are as active and diverse as at other productive margin sites of similar water depths. The availability of methane supports a two orders of magnitude higher microbial biomass (up to 9.6×10**10cells/cm**3). Sediment samples were obtained during RV SONNE cruises SO143-2 and SO148-1 at the crest of southern Hydrate Ridge at the Cascadia convergent margin off the coast of Oregon. Sediment cores of 20 - 40 cm length were obtained using a video-guided multiple corer from gas hydrate bearing sediments and from reference sites not enriched in methane in the surface sediments. Samples for total cell counts were obtained from 1 cm core slices, fixed with 2% formaldehyde and stored cold (4°C) and the quantification of aggregates was done via epifluorescence microscopy after staining the sediments with Acridine Orange Direct Counts (AODC) according to the method of Meyer- Reil (1983, doi:10.1007/BF00395813). Total cell counts were defined as the sum of single cells plus the aggregated cells in the syntrophic consortia. DAPI staining was used to measure ANME2/DSS aggregate sizes via epifluorescence microscopy of FISH-treated samples. For FISH, subsamples of sediment cores were sliced into 1 cm intervals and fixed for 2-3 h with 3% formaldehyde (final concentration), washed twice with 1×PBS (10 mM sodium phosphate; 130 mM NaCl), and finally stored in 1×PBS/EtOH (1:1) at -20°C.
    Keywords: Anaerobic methanotrophic archaea-2/DSS, cells in aggregates, targeted with ANME-2-538 and DSS658 oligonucleotide FISH-probe; Anaerobic methanotrophic archaea-2/DSS aggregates, targeted with ANME-2-538 and DSS658 oligonucleotide FISH-probe; Anaerobic methanotrophic archaea-2/DSS single cell, targeted with ANME-2-538 and DSS658 oligonucleotide FISH-probe; Anaerobic methanotrophic archaea-2/DSS total cells, targeted with ANME-2-538 and DSS658 oligonucleotide FISH-probe; Archaea, targed with ARCH915 oligonucleotide FISH-probe; Bacteria, targed with EUB338(I-III) oligonucleotide FISH-probe; Cascadia Margin; Cytophaga-Flavobacterium cluster, targeted with CF319a oligonucleotide FISH-probe; Date/Time of event; DEPTH, sediment/rock; Desulfobacterium spp., targeted with 221 oligonucleotides FISH-probe; Desulfobulbus spp., targeted with 660 oligonucleotides FISH-probe; Desulforhopalus spp., targeted with DSR651 oligonucleotides FISH-probe; Desulfotalea spp., targeted with Sval428 oligonucleotides FISH-probe; Desulfovibrio spp., targeted with DSV698 oligonucleotides FISH-probe; Desulfusarcina/Desulfococcus, targeted with DSS658 oligonucleotide FISH-probe; Event label; Fluorescence in situ hybridization (FISH); Habitat; Latitude of event; Longitude of event; Multicorer with television; SO143_105-1; SO143_139; SO143_185-1; SO143/2; SO148/1; SO148/1_19-2; SO148/1_38; SO148/1_51; Sonne; TECFLUX I; TECFLUX II; TVMUC; TV-MUC-10; TV-MUC-12; TV-MUC-6; Visual description
    Type: Dataset
    Format: text/tab-separated-values, 665 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    facet.materialart.
    Unknown
    NATURE PUBLISHING GROUP
    In:  EPIC3Isme Journal, NATURE PUBLISHING GROUP, 13, pp. 197-213, ISSN: 1751-7362
    Publication Date: 2020-02-14
    Description: Emission of the greenhouse gas methane from the seabed is globally controlled by marine aerobic and anaerobic methanotrophs gaining energy via methane oxidation. However, the processes involved in the assembly and dynamics of methanotrophic populations in complex natural microbial communities remain unclear. Here we investigated the development of a methanotrophic microbiome following subsurface mud eruptions at Håkon Mosby mud volcano (1250 m water depth). Freshly erupted muds hosted deep-subsurface communities that were dominated by Bathyarchaeota, Atribacteria and Chloroflexi. Methanotrophy was initially limited to a thin surface layer of Methylococcales populations consuming methane aerobically. With increasing distance to the eruptive center, anaerobic methanotrophic archaea, sulfate-reducing Desulfobacterales and thiotrophic Beggiatoaceae developed, and their respective metabolic capabilities dominated the biogeochemical functions of the community. Microbial richness, evenness, and cell numbers of the entire microbial community increased up to tenfold within a few years downstream of the mud flow from the eruptive center. The increasing diversity was accompanied by an up to fourfold increase in sequence abundance of relevant metabolic genes of the anaerobic methanotrophic and thiotrophic guilds. The communities fundamentally changed in their structure and functions as reflected in the metagenome turnover with distance from the eruptive center, and this was reflected in the biogeochemical zonation across the mud volcano caldera. The observed functional succession provides a framework for the response time and recovery of complex methanotrophic communities after disturbances of the deep-sea bed.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev , info:eu-repo/semantics/article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...