GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2015-2019  (12)
Document type
Years
Year
  • 1
    Publication Date: 2020-02-06
    Description: Gel particles—a class of abundant transparent organic particles—have increasingly gathered attention in marine research. Field studies on the bacterial colonization of marine gels however are still scarce. So far, most studies on respective particles have focused on the upper ocean, while little is known on their occurrence in the deep sea. Here, we report on the vertical distribution of the two most common gel particle types, which are polysaccharide-containing transparent exopolymer particles (TEP) and proteinaceous Coomassie stainable particles (CSP), as well as numbers of bacteria attached to gel particles throughout the water column, from the surface ocean down to the bathypelagial (〈 3,000 m). Our study was conducted in the Arctic Fram Strait during northern hemispheres' summer in 2015. Besides data on the bacterial colonization of the two gel particle types (TEP and CSP), we present bacterial densities on different gel particle size classes according to 12 different sampling depths at four sampling locations. Gel particles were frequently abundant at all sampled depths, and their concentrations decreased from the euphotic zone to the dark ocean. They were colonized by bacteria at all sampled water depths with risen importance at the deepest water layers, where fractions of bacteria attached to gel particles (%) increased within the total bacterial community. Due to the omnipresent bacterial colonization of gel particles at all sampled depths in our study, we presume that euphotic production of this type of organic matter may affect microbial species distribution within the whole water column in the Fram Strait, down to the deep sea. Our results raise the question if changes in the bacterial community composition and functioning on gel particles occur over depth, which may affect microbial respiration and remineralization rates of respective particles in different water layers.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
  • 3
    Publication Date: 2022-01-31
    Description: In this paper we review on the technologies available to make globally quantitative observations of particles, in general, and plankton, in particular, in the world oceans, and for sizes varying from sub-micron to centimeters. Some of these technologies have been available for years while others have only recently emerged. Use of these technologies is critical to improve understanding of the processes that control abundances, distributions and composition of plankton, provide data necessary to constrain and improve ecosystem and biogeochemical models, and forecast changes in marine ecosystems in light of climate change. In this paper we begin by providing the motivation for plankton observations, quantification and diversity qualification on a global scale. We then expand on the state-of-the-art, detailing a variety of relevant and (mostly) mature technologies and measurements, including bulk measurements of plankton, pigment composition, uses of genomic, optical, acoustical methods and analysis using particles counters, flow cytometers and quantitative imaging devices. We follow by highlighting the requirements necessary for a plankton observing system, the approach to achieve it and associated challenges. We conclude with ranked action-item recommendations for the next ten years to move towards our vision of a holistic ocean-wide plankton observing system. Particularly, we suggest to begin with a demonstration project on a GO-SHIP line and/or a long-term observation site and expand from there ensuring that issues associated with methods, observation tools, data analysis, quality assessment and curation are addressed early in the implementation. Global coordination is key for the success of this vision and will bring new insights on processes associated with nutrient regeneration, ocean production, fisheries, and carbon sequestration.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2017-01-22
    Description: The ocean's biological carbon pump plays a central role in regulating atmospheric CO2 levels. In particular, the depth at which sinking organic carbon is broken down and respired in the mesopelagic zone is critical, with deeper remineralization resulting in greater carbon storage. Until recently, however, a balanced budget of the supply and consumption of organic carbon in the mesopelagic had not been constructed in any region of the ocean, and the processes controlling organic carbon turnover are still poorly understood. Large-scale data syntheses suggest that a wide range of factors can influence remineralization depth including upper-ocean ecological interactions, and interior dissolved oxygen concentration and temperature. However, these analyses do not provide a mechanistic understanding of remineralization, which increases the challenge of appropriately modeling the mesopelagic carbon dynamics. In light of this, the UK Natural Environment Research Council has funded a programme with this mechanistic understanding as its aim, drawing targeted fieldwork right through to implementation of a new parameterization for mesopelagic remineralization within an IPCC class global biogeochemical model. The Controls over Ocean Mesopelagic Interior Carbon Storage (COMICS) programme will deliver new insights into the processes of carbon cycling in the mesopelagic zone and how these influence ocean carbon storage. Here we outline the programme's rationale, its goals, planned fieldwork, and modeling activities, with the aim of stimulating international collaboration.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , peerRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2018-10-29
    Description: Eastern boundary upwelling systems (EBUSs) are among the most productive marine environments in the world. The Canary Current upwelling system off the coast of Mauritania and Morocco is the second most productive of the four EBUS, where nutrient-rich waters fuel perennial phytoplankton blooms, evident by high chlorophyll a concentrations off Cape Blanc, Mauritania. High primary production leads to eutrophic waters in the surface layers, whereas sinking phytoplankton debris and horizontally dispersed particles form nepheloid layers (NLs) and hypoxic waters at depth. We used Catalyzed Reporter Deposition Fluorescence In Situ Hybridization (CARD-FISH) in combination with fatty acid (measured as methyl ester; FAME) profiles to investigate the bacterial and archaeal community composition along transects from neritic to pelagic waters within the “giant Cape Blanc filament” in two consecutive years (2010 and 2011), and to evaluate the usage of FAME data for microbial community studies. We also report the first fatty acid profile of Pelagibacterales strain HTCC7211 which was used as a reference profile for the SAR11 clade. Unexpectedly, the reference profile contained low concentrations of long chain fatty acids 18:1 cis11, 18:1 cis11 11methyl, and 19:0 cyclo11–12 fatty acids, the main compounds in other Alphaproteobacteria. Members of the free-living SAR11 clade were found at increased relative abundance in the hypoxic waters in both years. In contrast, the depth profiles of Gammaproteobacteria (including Alteromonas and Pseudoalteromonas), Bacteroidetes, Roseobacter, and Synechococcus showed high abundances of these groups in layers where particle abundance was high, suggesting that particle attachment or association is an important mechanisms of dispersal for these groups. Collectively, our results highlight the influence of NLs, horizontal particle transport, and low oxygen on the structure and dispersal of microbial communities in upwelling systems.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-02-25
    Description: Marine snow aggregates are microhabitats for diverse microbial communities with various active metabolic pathways. Rapid recycling and symbiotic transfer of nutrients within aggregates poses a significant challenge for accurately assessing aggregate‐associated turnover rates. Although single‐cell uptake measurements are well‐established for free‐living microorganisms, suitable methods for cells embedded in marine snow are currently lacking. Comparable cell‐specific measurements within sinking pelagic aggregates would have the potential to address core questions regarding aggregate‐associated fluxes. However, the capacity to perform microscale studies is limited by the difficulty of sampling and preserving the fragile aggregate structure. Furthermore, the application of nano‐scale secondary ion mass spectrometry (NanoSIMS) to aggregates is complicated by technical requirements related to vacuum and ablation resistance. Here, we present a NanoSIMS‐optimized method for fixation, embedding, and sectioning of marine snow. Stable isotope labeling of laboratory‐generated aggregates enabled visualization of label incorporation into prokaryotic and eukaryotic cells embedded in the aggregate structure. The current method is also amenable to various staining procedures, including transparent exopolymer particles, Coomassie stainable particles, nucleic acids, and eukaryotic cytoplasm. We demonstrate the potential for using structural stains to generate three‐dimensional (3D) models of marine snow and present a simplified calculation of porosity and fractal dimension. This multipurpose method enables combined investigations of 3D aggregate structure, spatial microbial distribution, and single‐cell activity within individual aggregates and provides new possibilities for future studies on microbial interactions and elemental uptake within marine snow.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , peerRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    In:  EPIC3Limnology and Oceanography: Methods, 16(6), pp. 339-355, ISSN: 15415856
    Publication Date: 2019-02-25
    Description: The biological carbon pump is largely driven by the formation and sinking of marine snow. Because of their high organic matter content, marine snow aggregates are hotspots for microbial activity, and microbial organic matter degradation plays an important role in the attenuation of carbon fluxes to the deep sea. Our inability to examine and characterize microscale distributions of compounds making up the aggregate matrix, and of possible niches inside marine snow, has hindered our understanding of the basic processes governing marine carbon export and sequestration. To address this issue, we have adapted soft‐embedding and sectioning to study the spatial structure and components of marine aggregates at high resolution. Soft‐embedding enables rapid quantitative sampling of undisturbed marine aggregates from the water column and from sediment traps, followed by spatially resolved staining and characterization of substrates of the aggregate matrix and the microorganisms attached to it. Particular strengths of the method include in situ embedding in sediment traps and successful fluorescence in situ hybridization (FISH)‐probe labeling, supporting studies of microbial diversity and ecology. The high spatial resolution achieved by thin‐sectioning of soft‐embedded aggregates offers the possibility for improved understanding of the composition and structure of marine snow, which directly influence settling velocity, microbial colonization and diversity, degradation rates, and carbon content. Our method will help to elucidate the small‐scale processes underlying large‐scale carbon cycling in the marine environment, which is especially relevant in the context of rising anthropogenic CO2 emissions and global change.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , peerRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2018-08-16
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2017-07-03
    Description: Gel particles—a class of abundant transparent organic particles—have increasingly gathered attention in marine research. Field studies on the bacterial colonization of marine gels however are still scarce. So far, most studies on respective particles have focused on the upper ocean, while little is known on their occurrence in the deep sea. Here, we report on the vertical distribution of the two most common gel particle types, which are polysaccharide-containing transparent exopolymer particles (TEP) and proteinaceous Coomassie stainable particles (CSP), as well as numbers of bacteria attached to gel particles throughout the water column, from the surface ocean down to the bathypelagial (〈 3,000 m). Our study was conducted in the Arctic Fram Strait during northern hemispheres' summer in 2015. Besides data on the bacterial colonization of the two gel particle types (TEP and CSP), we present bacterial densities on different gel particle size classes according to 12 different sampling depths at four sampling locations. Gel particles were frequently abundant at all sampled depths, and their concentrations decreased from the euphotic zone to the dark ocean. They were colonized by bacteria at all sampled water depths with risen importance at the deepest water layers, where fractions of bacteria attached to gel particles (%) increased within the total bacterial community. Due to the omnipresent bacterial colonization of gel particles at all sampled depths in our study, we presume that euphotic production of this type of organic matter may affect microbial species distribution within the whole water column in the Fram Strait, down to the deep sea. Our results raise the question if changes in the bacterial community composition and functioning on gel particles occur over depth, which may affect microbial respiration and remineralization rates of respective particles in different water layers.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , peerRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-09-13
    Description: Greenland fjords receive considerable amounts of glacial meltwater discharge from the Greenland Ice Sheet due to present climate warming. This impacts the hydrography, via freshening of the fjord waters, and biological processes due to altered nutrient input and the addition of silts. We present the first comprehensive analysis of the summer carbon cycle in the world's largest fjord system situated in southeastern Greenland. During a cruise onboard RV Maria S. Merian in summer 2016, we visited Scoresby Sund and its northernmost branch, Nordvestfjord. In addition to direct measurements of hydrography, biogeochemical parameters and sediment trap fluxes, we derived net community production (NCP) and full water column particulate organic carbon (POC) fluxes, and estimated carbon remineralization from vertical flux attenuation. While the narrow Nordvestfjord is influenced by subglacial and surface meltwater discharge, these meltwater effects on the outer fjord part of Scoresby Sund are weakened due to its enormous width. We found that subglacial and surface meltwater discharge to Nordvestfjord significantly limited NCP to 32–36 mmol C m−2 d−1 compared to the outer fjord part of Scoresby Sund (58–82 mmol C m−2 d−1) by inhibiting the resupply of nutrients to the surface and by shadowing of silts contained in the meltwater. The POC flux close to the glacier fronts was elevated due to silt-ballasting of settling particles that increases the sinking velocity and thereby reduces the time for remineralization processes within the water column. By contrast, the outer fjord part of Scoresby Sund showed stronger attenuation of particles due to horizontal advection and, hence, more intense remineralization within the water column. Our results imply that glacially influenced parts of Greenland's fjords can be considered as hotspots of carbon export to depth. In a warming climate, this export is likely to be enhanced during glacial melting. Additionally, entrainment of increasingly warmer Atlantic Water might support a higher productivity in fjord systems. It therefore seems that future ice-free fjord systems with high input of glacial meltwater may become increasingly important for Arctic carbon sequestration.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...