GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Document type
Keywords
Years
  • 1
    Publication Date: 2023-02-08
    Description: In September 2019, the research icebreaker Polarstern started the largest multidisciplinary Arctic expedition to date, the MOSAiC (Multidisciplinary drifting Observatory for the Study of Arctic Climate) drift experiment. Being moored to an ice floe for a whole year, thus including the winter season, the declared goal of the expedition is to better understand and quantify relevant processes within the atmosphere–ice–ocean system that impact the sea ice mass and energy budget, ultimately leading to much improved climate models. Satellite observations, atmospheric reanalysis data, and readings from a nearby meteorological station indicate that the interplay of high ice export in late winter and exceptionally high air temperatures resulted in the longest ice-free summer period since reliable instrumental records began. We show, using a Lagrangian tracking tool and a thermodynamic sea ice model, that the MOSAiC floe carrying the Central Observatory (CO) formed in a polynya event north of the New Siberian Islands at the beginning of December 2018. The results further indicate that sea ice in the vicinity of the CO (〈40 km distance) was younger and 36 % thinner than the surrounding ice with potential consequences for ice dynamics and momentum and heat transfer between ocean and atmosphere. Sea ice surveys carried out on various reference floes in autumn 2019 verify this gradient in ice thickness, and sediments discovered in ice cores (so-called dirty sea ice) around the CO confirm contact with shallow waters in an early phase of growth, consistent with the tracking analysis. Since less and less ice from the Siberian shelves survives its first summer (Krumpen et al., 2019), the MOSAiC experiment provides the unique opportunity to study the role of sea ice as a transport medium for gases, macronutrients, iron, organic matter, sediments and pollutants from shelf areas to the central Arctic Ocean and beyond. Compared to data for the past 26 years, the sea ice encountered at the end of September 2019 can already be classified as exceptionally thin, and further predicted changes towards a seasonally ice-free ocean will likely cut off the long-range transport of ice-rafted materials by the Transpolar Drift in the future. A reduced long-range transport of sea ice would have strong implications for the redistribution of biogeochemical matter in the central Arctic Ocean, with consequences for the balance of climate-relevant trace gases, primary production and biodiversity in the Arctic Ocean.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2020-08-02
    Description: In September 2019, the research icebreaker Polarstern started the largest multidisciplinary Arctic expedition to date, the MOSAiC (Multidisciplinary drifting Observatory for the Study of Arctic Climate) drift experiment. Being moored to an ice floe for a whole year, thus including the winter season, the declared goal of the expedition is to better understand and quantify relevant processes within the atmosphere–ice–ocean system that impact the sea ice mass and energy budget, ultimately leading to much improved climate models. Satellite observations, atmospheric reanalysis data, and readings from a nearby meteorological station indicate that the interplay of high ice export in late winter and exceptionally high air temperatures resulted in the longest ice-free summer period since reliable instrumental records began. We show, using a Lagrangian tracking tool and a thermodynamic sea ice model, that the MOSAiC floe carrying the Central Observatory (CO) formed in a polynya event north of the New Siberian Islands at the beginning of December 2018. The results further indicate that sea ice in the vicinity of the CO (〈40 km distance) was younger and 36 % thinner than the surrounding ice with potential consequences for ice dynamics and momentum and heat transfer between ocean and atmosphere. Sea ice surveys carried out on various reference floes in autumn 2019 verify this gradient in ice thickness, and sediments discovered in ice cores (so-called dirty sea ice) around the CO confirm contact with shallow waters in an early phase of growth, consistent with the tracking analysis. Since less and less ice from the Siberian shelves survives its first summer (Krumpen et al., 2019), the MOSAiC experiment provides the unique opportunity to study the role of sea ice as a transport medium for gases, macronutrients, iron, organic matter, sediments and pollutants from shelf areas to the central Arctic Ocean and beyond. Compared to data for the past 26 years, the sea ice encountered at the end of September 2019 can already be classified as exceptionally thin, and further predicted changes towards a seasonally ice-free ocean will likely cut off the long-range transport of ice-rafted materials by the Transpolar Drift in the future. A reduced long-range transport of sea ice would have strong implications for the redistribution of biogeochemical matter in the central Arctic Ocean, with consequences for the balance of climate-relevant trace gases, primary production and biodiversity in the Arctic Ocean.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev , info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2021-06-16
    Description: Changes in Arctic sea ice thickness are the result of complex interactions of the dynamic and variable ice cover with atmosphere and ocean. Most of the sea ice exiting the Arctic Ocean does so through Fram Strait, which is why long-term measurements of ice thickness at the end of the Transpolar Drift provide insight into the integrated signals of thermodynamic and dynamic influences along the pathways of Arctic sea ice. We present an updated summer (July–August) time series of extensive ice thickness surveys carried out at the end of the Transpolar Drift between 2001 and 2020. Overall, we see a more than 20 % thinning of modal ice thickness since 2001. A comparison of this time series with first preliminary results from the international Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC) shows that the modal summer thickness of the MOSAiC floe and its wider vicinity are consistent with measurements from previous years at the end of the Transpolar Drift. By combining this unique time series with the Lagrangian sea ice tracking tool, ICETrack, and a simple thermodynamic sea ice growth model, we link the observed interannual ice thickness variability north of Fram Strait to increased drift speeds along the Transpolar Drift and the consequential variations in sea ice age. We also show that the increased influence of upward-directed ocean heat flux in the eastern marginal ice zones, termed Atlantification, is not only responsible for sea ice thinning in and around the Laptev Sea but also that the induced thickness anomalies persist beyond the Russian shelves and are potentially still measurable at the end of the Transpolar Drift after more than a year. With a tendency towards an even faster Transpolar Drift, winter sea ice growth will have less time to compensate for the impact processes, such as Atlantification, have on sea ice thickness in the eastern marginal ice zone, which will increasingly be felt in other parts of the sea-ice-covered Arctic.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2020-07-08
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2020-07-08
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2021-03-11
    Description: Fram Strait is the main exit gate for sea ice in the Arctic Ocean. Observations of changes in sea ice thickness (SIT) in this region are therefore an integration of time-varying changes along the pathways of sea ice that reaches Fram Strait. We present an extended time series of combined ground-based and airborne electromagnetic induction (EM) measurements of summer (July/August) SIT from within a selected area of interest (AOI, 81 to 86°N, 30°W to 20°E) between Svalbard and Northeastern Greenland, capturing the end of the Transpolar Drift. Measurements were taken within the framework of the regular IceBird Summer campaigns and ship-based expeditions conducted by the Alfred Wegener Institute for Polar and Marine Research between 2001 and 2020. While sea ice reaching the AOI was dominated by multi-year ice (ice older than two years) at the beginning of the time series, the fraction of second and first-year ice increased over the last decade. Mean and modal SIT decreased by about 0.5 m from 2001 to 2018. Minimum values were reached between 2016 and 2018, with 2016 showing the absolute minimum in modal SIT (approximately 1 m). Sea ice reaching the selected AOI was backtracked using the Lagrangian ice tracking tool, ICETrack. Resulting sea ice trajectories show that about 65% of the AOI-sampled ice originated from the Laptev Sea. The simple thermodynamic SIT model introduced by Thorndike (1992, T92) was utilized to model thermodynamic sea ice growth along the trajectories. The thermodynamic model generates ice thicknesses that are comparable to the modal thickness from EM measurements. T92 shows a general underestimation of AOI EM SIT for all years except 2016, when the modal AOI EM SIT is overestimated by about 0.4 m. This model overestimation was potentially connected to the increased upward ocean heat flux and more specifically a strong atlantification event in the regions of ice formation along the Russian shelves in 2015 (Polyakov, 2017).
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    AGU
    In:  EPIC3Journal of Geophysical Research: Oceans, AGU, 126(5)
    Publication Date: 2021-05-19
    Description: Increased ocean‐to‐ice heat fluxes play a key role in the accelerated mass loss of Greenland’s marine‐terminating glaciers. Ocean current variability leads to variations in this heat flux. A year‐long time series of ocean currents at all gateways to the ocean cavity under Greenland’s largest remaining floating ice tongue at the Nioghalvfjerdsfjorden Glacier (79NG) was analyzed. The variability of the exchange flow at intra‐annual to near‐daily timescales was characterized. The currents exhibit considerable variability with standard deviations exceeding the time mean flow strength by a factor of 2. The inflow of warm Atlantic Intermediate Water into the cavity and the outflow via the northernmost calving front were directly coupled on intra‐annual timescales (periods, T 〉 30 days) with enhanced fluctuations in the winter months. A strong correlation between the variability of the deep inflow and currents in the subsurface boundary current on the continental shelf suggests a link between cavity and continental shelf circulation. Variability on higher frequencies (T 〈 30 days) in the outflow was only partly induced by the inflow variability. Two export branches of the cavity circulation were identified, which were potentially constrained by subglacial meltwater channels. The relative importance of the two export branches varies on monthly time scales. This research has provided evidence that the large intra‐annual ocean current variability at the 79NG is strongly influenced by the continental shelf circulation. Temporally varying preferred export routes increase the complexity of the cavity circulation.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2021-05-19
    Description: An unusual, large, latent-heat polynya opened and then closed by freezing and convergence north of Greenland's coast in late winter 2018. The closing presented a natural but well-constrained full-scale ice deformation experiment. We observed the closing of and deformation within the polynya with satellite synthetic-aperture radar (SAR) imagery and measured the accumulated effects of dynamic and thermodynamic ice growth with an airborne electromagnetic (AEM) ice thickness survey 1 month after the closing began. During that time, strong ice convergence decreased the area of the refrozen polynya by a factor of 2.5. The AEM survey showed mean and modal thicknesses of the 1-month-old ice of 1.96 ± 1.5 m and 1.1 m, respectively. We show that this is in close agreement with modeled thermodynamic growth and with the dynamic thickening expected from the polynya area decrease during that time. We found significant differences in the shapes of ice thickness distributions (ITDs) in different regions of the refrozen polynya. These closely corresponded to different deformation histories of the surveyed ice that we reconstructed from Lagrangian ice drift trajectories in reverse chronological order. We constructed the ice drift trajectories from regularly gridded, high-resolution drift fields calculated from SAR imagery and extracted deformation derived from the drift fields along the trajectories. Results show a linear proportionality between convergence and thickness change that agrees well with the ice thickness redistribution theory. We found a proportionality between the e folding of the ITDs' tails and the total deformation experienced by the ice. Lastly, we developed a simple, volume-conserving model to derive dynamic ice thickness change from the combination of Lagrangian trajectories and high-resolution SAR drift and deformation fields. The model has a spatial resolution of 1.4 km and reconstructs thickness profiles in reasonable agreement with the AEM observations. The modeled ITD resembles the main characteristics of the observed ITD, including mode, e folding, and full width at half maximum. Thus, we demonstrate that high-resolution SAR deformation observations are capable of producing realistic ice thickness distributions.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2020-12-20
    Description: Dynamic processes can contribute more than 50% to the total thickness of deformed sea ice. They gain importance in the context of a changing Arctic, in which reduced ice thickness and increased drift speed enhance deformation events that might compensate the thermodynamic thinning. The case study of an unusual, large polynya that opened and then closed by freezing and convergence north of the coast of Greenland in late winter 2018 offers us the unique chance to study the effects of dynamics on ice thickness in detail. We calculated drift and deformation fields for the closing phase of the polynya from a time series of daily Synthetic Aperture Radar (SAR) satellite images and measured the accumulated effects of dynamic and thermodynamic ice growth with an airborne electromagnetic (AEM) ice thickness survey one month after the closing began. We observed that strong ice convergence decreased the area of the former polynya by a factor of 2.5 while the AEM survey indicated mean and modal thicknesses of the one-month old ice of 1.96 and 0.95 m, respectively. This is in close agreement with the calculated thermodynamic growth and with the dynamic thickening expected from the polynya area decrease. Further, we identified characteristic differences in the shapes of ice thickness distributions in different regions of the closing polynya that are linked to the deformation histories of the ice. We reconstructed the deformation history by combining Lagrangian backward trajectories with the deformation fields derived from high-resolution SAR imagery. We found a linear proportionality between convergence and thickness change in good agreement with ice thickness redistribution theory. Further, we identified a proportionality between the e-folding of the tails of the different ice thickness distributions and the magnitude of the total deformation experienced by the ice. Lastly, we developed a simple volume-conserving model to derive dynamic ice thicknesses change from high-resolution SAR deformation tracking. Model and AEM observations agree reasonably well and the derived ice thickness distribution reproduce main characteristics like mode, width, and e-folding of the observed distribution. Hence, this shows that high-resolution SAR deformation observations are capable of producing realistic ice thickness distributions.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Format: application/zip
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    facet.materialart.
    Unknown
    In:  EPIC3Annual Meeting IBC User Selection Panel, Schloßhotel Dresden-Pillnitz, 2017-12-13-2017-12-14
    Publication Date: 2017-12-18
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...