GLORIA

GEOMAR Library Ocean Research Information Access

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
Materialart
Person/Organisation
Sprache
Erscheinungszeitraum
  • 1
    Online-Ressource
    Online-Ressource
    The Royal Society ; 2020
    In:  Philosophical Transactions of the Royal Society B: Biological Sciences Vol. 375, No. 1794 ( 2020-03-16), p. 20190105-
    In: Philosophical Transactions of the Royal Society B: Biological Sciences, The Royal Society, Vol. 375, No. 1794 ( 2020-03-16), p. 20190105-
    Kurzfassung: Ecologists have long studied patterns, directions and tempos of change, but there is a pressing need to extend current understanding to empirical observations of abrupt changes as climate warming accelerates. Abrupt changes in ecological systems (ACES)—changes that are fast in time or fast relative to their drivers—are ubiquitous and increasing in frequency. Powerful theoretical frameworks exist, yet applications in real-world landscapes to detect, explain and anticipate ACES have lagged. We highlight five insights emerging from empirical studies of ACES across diverse ecosystems: (i) ecological systems show ACES in some dimensions but not others; (ii) climate extremes may be more important than mean climate in generating ACES; (iii) interactions among multiple drivers often produce ACES; (iv) contingencies, such as ecological memory, frequency and sequence of disturbances, and spatial context are important; and (v) tipping points are often (but not always) associated with ACES. We suggest research priorities to advance understanding of ACES in the face of climate change. Progress in understanding ACES requires strong integration of scientific approaches (theory, observations, experiments and process-based models) and high-quality empirical data drawn from a diverse array of ecosystems. This article is part of the theme issue ‘Climate change and ecosystems: threats, opportunities and solutions’
    Materialart: Online-Ressource
    ISSN: 0962-8436 , 1471-2970
    RVK:
    Sprache: Englisch
    Verlag: The Royal Society
    Publikationsdatum: 2020
    ZDB Id: 1462620-2
    SSG: 12
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 117, No. 29 ( 2020-07-21), p. 16816-16823
    Kurzfassung: South American (SA) societies are highly vulnerable to droughts and pluvials, but lack of long-term climate observations severely limits our understanding of the global processes driving climatic variability in the region. The number and quality of SA climate-sensitive tree ring chronologies have significantly increased in recent decades, now providing a robust network of 286 records for characterizing hydroclimate variability since 1400 CE. We combine this network with a self-calibrated Palmer Drought Severity Index (scPDSI) dataset to derive the South American Drought Atlas (SADA) over the continent south of 12°S. The gridded annual reconstruction of austral summer scPDSI is the most spatially complete estimate of SA hydroclimate to date, and well matches past historical dry/wet events. Relating the SADA to the Australia–New Zealand Drought Atlas, sea surface temperatures and atmospheric pressure fields, we determine that the El Niño–Southern Oscillation (ENSO) and the Southern Annular Mode (SAM) are strongly associated with spatially extended droughts and pluvials over the SADA domain during the past several centuries. SADA also exhibits more extended severe droughts and extreme pluvials since the mid-20th century. Extensive droughts are consistent with the observed 20th-century trend toward positive SAM anomalies concomitant with the weakening of midlatitude Westerlies, while low-level moisture transport intensified by global warming has favored extreme rainfall across the subtropics. The SADA thus provides a long-term context for observed hydroclimatic changes and for 21st-century Intergovernmental Panel on Climate Change (IPCC) projections that suggest SA will experience more frequent/severe droughts and rainfall events as a consequence of increasing greenhouse gas emissions.
    Materialart: Online-Ressource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Sprache: Englisch
    Verlag: Proceedings of the National Academy of Sciences
    Publikationsdatum: 2020
    ZDB Id: 209104-5
    ZDB Id: 1461794-8
    SSG: 11
    SSG: 12
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    In: New Phytologist, Wiley, Vol. 200, No. 2 ( 2013-10), p. 304-321
    Kurzfassung: Featured paper: See also the Editorial by McDowell et al
    Materialart: Online-Ressource
    ISSN: 0028-646X , 1469-8137
    URL: Issue
    Sprache: Englisch
    Verlag: Wiley
    Publikationsdatum: 2013
    ZDB Id: 208885-X
    ZDB Id: 1472194-6
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 4
    Online-Ressource
    Online-Ressource
    American Geophysical Union (AGU) ; 2018
    In:  Geophysical Research Letters Vol. 45, No. 11 ( 2018-06-16), p. 5653-5662
    In: Geophysical Research Letters, American Geophysical Union (AGU), Vol. 45, No. 11 ( 2018-06-16), p. 5653-5662
    Kurzfassung: Warm‐season daytime cloud frequency significantly declined in much of coastal Southern California over the past half century Based on a statistical model, observed reductions in coastal cloud frequency significantly increased net radiation and evaporative demand Correlation analysis suggests that summer cloud frequency significantly affects fuel moisture and burned area in coastal Southern California
    Materialart: Online-Ressource
    ISSN: 0094-8276 , 1944-8007
    Sprache: Englisch
    Verlag: American Geophysical Union (AGU)
    Publikationsdatum: 2018
    ZDB Id: 2021599-X
    ZDB Id: 7403-2
    SSG: 16,13
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 5
    In: Journal of Climate, American Meteorological Society, Vol. 33, No. 8 ( 2020-04-15), p. 3173-3195
    Kurzfassung: Cool- and warm-season precipitation totals have been reconstructed on a gridded basis for North America using 439 tree-ring chronologies correlated with December–April totals and 547 different chronologies correlated with May–July totals. These discrete seasonal chronologies are not significantly correlated with the alternate season; the December–April reconstructions are skillful over most of the southern and western United States and north-central Mexico, and the May–July estimates have skill over most of the United States, southwestern Canada, and northeastern Mexico. Both the strong continent-wide El Niño–Southern Oscillation (ENSO) signal embedded in the cool-season reconstructions and the Arctic Oscillation signal registered by the warm-season estimates faithfully reproduce the sign, intensity, and spatial patterns of these ocean–atmospheric influences on North American precipitation as recorded with instrumental data. The reconstructions are included in the North American Seasonal Precipitation Atlas (NASPA) and provide insight into decadal droughts and pluvials. They indicate that the sixteenth-century megadrought, the most severe and sustained North American drought of the past 500 years, was the combined result of three distinct seasonal droughts, each bearing unique spatial patterns potentially associated with seasonal forcing from ENSO, the Arctic Oscillation, and the Atlantic multidecadal oscillation. Significant 200–500-yr-long trends toward increased precipitation have been detected in the cool- and warm-season reconstructions for eastern North America. These seasonal precipitation changes appear to be part of the positive moisture trend measured in other paleoclimate proxies for the eastern area that began as a result of natural forcing before the industrial revolution and may have recently been enhanced by anthropogenic climate change.
    Materialart: Online-Ressource
    ISSN: 0894-8755 , 1520-0442
    RVK:
    Sprache: Unbekannt
    Verlag: American Meteorological Society
    Publikationsdatum: 2020
    ZDB Id: 246750-1
    ZDB Id: 2021723-7
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 6
    Online-Ressource
    Online-Ressource
    CSIRO Publishing ; 2017
    In:  International Journal of Wildland Fire Vol. 26, No. 4 ( 2017), p. 269-
    In: International Journal of Wildland Fire, CSIRO Publishing, Vol. 26, No. 4 ( 2017), p. 269-
    Kurzfassung: Interannual variability in burn severity is assessed across forested ecoregions of the western United States to understand how it is influenced by variations in area burned and climate during 1984–2014. Strong correlations (|r|  〉  0.6) between annual area burned and climate metrics were found across many of the studied regions. The burn severity of individual fires and fire seasons was weakly, but significantly (P  〈  0.05), correlated with burned area across many regions. Interannual variability in fuel dryness evaluated with fuel aridity metrics demonstrated weak-to-moderate (|r| 〉 0.4) relationships with regional burn severity, congruent with but weaker than those between climate and area burned for most ecoregions. These results collectively suggest that irrespective of other factors, long-term increases in fuel aridity will lead to increased burn severity in western United States forests for existing vegetation regimes.
    Materialart: Online-Ressource
    ISSN: 1049-8001
    Sprache: Englisch
    Verlag: CSIRO Publishing
    Publikationsdatum: 2017
    SSG: 12
    SSG: 23
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 7
    In: Earth Interactions, American Meteorological Society, Vol. 20, No. 15 ( 2016-05-01), p. 1-19
    Kurzfassung: The presence of low-lying stratocumulus clouds and fog has been known to modify biophysical and ecological properties in coastal California where forests are frequently shaded by low-lying clouds or immersed in fog during otherwise warm and dry summer months. Summer fog and stratus can ameliorate summer drought stress and enhance soil water budgets and often have different spatial and temporal patterns. Here, this study uses remote sensing datasets to characterize the spatial and temporal patterns of cloud cover over California’s northern Channel Islands. The authors found marine stratus to be persistent from May to September across the years 2001–12. Stratus clouds were both most frequent and had the greatest spatial extent in July. Clouds typically formed in the evening and dissipated by the following early afternoon. This study presents a novel method to downscale satellite imagery using atmospheric observations and discriminate patterns of fog from those of stratus and help explain patterns of fog deposition previously studied on the islands. The outcomes of this study contribute significantly to the ability to quantify the occurrence of coastal fog at biologically meaningful spatial and temporal scales that can improve the understanding of cloud–ecosystem interactions, species distributions, and coastal ecohydrology.
    Materialart: Online-Ressource
    ISSN: 1087-3562
    Sprache: Englisch
    Verlag: American Meteorological Society
    Publikationsdatum: 2016
    ZDB Id: 2025258-4
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 8
    Online-Ressource
    Online-Ressource
    American Meteorological Society ; 2015
    In:  Journal of Climate Vol. 28, No. 20 ( 2015-10-15), p. 7943-7961
    In: Journal of Climate, American Meteorological Society, Vol. 28, No. 20 ( 2015-10-15), p. 7943-7961
    Kurzfassung: Recent modeling studies of future vegetation change suggest the potential for large-scale forest die-off in the tropics. Taken together with observational evidence of increasing tree mortality in numerous ecosystem types, there is clearly a need for projections of vegetation change. To that end, the authors have performed an ensemble of climate–vegetation experiments with the National Science Foundation–DOE Community Atmosphere Model (CAM) coupled to the Community Land Model (CAM–CLM-CN) with its dynamic vegetation model enabled (CAM–CLM-CNDV). To overcome the limitations of using a single model, the authors employ the sea surface temperature (SST) warming patterns simulated by eight different models from the Coupled Model Intercomparison Program phase 3 (CMIP3) as boundary conditions. Since the SST warming pattern in part dictates how precipitation may change in the future, in this way a range of future vegetation–climate trajectories can be produced. On an annual average basis, this study’s CAM–CLM-CN simulations do not produce as large a spread in projected precipitation as the original CMIP3 archive. These differences are due to the tendency of CAM–CLM-CN to increase tropical precipitation under a global warming scenario, although this response is modulated by the SST warming patterns imposed. However, the CAM–CLM-CN simulations reproduce the enhanced dry season in the tropics simulated by CMIP3. These simulations show longer fire seasons and increases in fractional area burned. In one ensemble member, extreme droughts over tropical South America lead to fires that remove vegetation cover in the eastern Amazon, suggesting that large-scale die-offs are an unlikely but still possible event.
    Materialart: Online-Ressource
    ISSN: 0894-8755 , 1520-0442
    RVK:
    Sprache: Englisch
    Verlag: American Meteorological Society
    Publikationsdatum: 2015
    ZDB Id: 246750-1
    ZDB Id: 2021723-7
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 9
    In: Global Change Biology, Wiley, Vol. 28, No. 16 ( 2022-08), p. 4794-4806
    Kurzfassung: Earth's ecosystems are increasingly threatened by “hot drought,” which occurs when hot air temperatures coincide with precipitation deficits, intensifying the hydrological, physiological, and ecological effects of drought by enhancing evaporative losses of soil moisture (SM) and increasing plant stress due to higher vapor pressure deficit (VPD). Drought‐induced reductions in gross primary production (GPP) exert a major influence on the terrestrial carbon sink, but the extent to which hotter and atmospherically drier conditions will amplify the effects of precipitation deficits on Earth's carbon cycle remains largely unknown. During summer and autumn 2020, the U.S. Southwest experienced one of the most intense hot droughts on record, with record‐low precipitation and record‐high air temperature and VPD across the region. Here, we use this natural experiment to evaluate the effects of hot drought on GPP and further decompose those negative GPP anomalies into their constituent meteorological and hydrological drivers. We found a 122 Tg C ( 〉 25%) reduction in GPP below the 2015–2019 mean, by far the lowest regional GPP over the Soil Moisture Active Passive satellite record. Roughly half of the estimated GPP loss was attributable to low SM (likely a combination of record‐low precipitation and warming‐enhanced evaporative depletion), but record‐breaking VPD amplified the reduction of GPP, contributing roughly 40% of the GPP anomaly. Both air temperature and VPD are very likely to continue increasing over the next century, likely leading to more frequent and intense hot droughts and substantially enhancing drought‐induced GPP reductions.
    Materialart: Online-Ressource
    ISSN: 1354-1013 , 1365-2486
    URL: Issue
    Sprache: Englisch
    Verlag: Wiley
    Publikationsdatum: 2022
    ZDB Id: 2020313-5
    SSG: 12
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 10
    Online-Ressource
    Online-Ressource
    Springer Science and Business Media LLC ; 2021
    In:  Communications Earth & Environment Vol. 2, No. 1 ( 2021-11-02)
    In: Communications Earth & Environment, Springer Science and Business Media LLC, Vol. 2, No. 1 ( 2021-11-02)
    Kurzfassung: Escalating burned area in western US forests punctuated by the 2020 fire season has heightened the need to explore near-term macroscale forest-fire area trajectories. As fires remove fuels for subsequent fires, feedbacks may impose constraints on the otherwise climate-driven trend of increasing forest-fire area. Here, we test how fire-fuel feedbacks moderate near-term (2021–2050) climate-driven increases in forest-fire area across the western US. Assuming constant fuels, climate–fire models project a doubling of  forest-fire area compared to 1991–2020. Fire-fuel feedbacks only modestly attenuate the projected increase in forest-fire area. Even models with strong feedbacks project increasing interannual variability in forest-fire area and more than a two-fold increase in the likelihood of years exceeding the 2020 fire season. Fuel limitations from fire-fuel feedbacks are unlikely to strongly constrain the profound climate-driven broad-scale increases in forest-fire area by the mid-21st century, highlighting the need for proactive adaptation to increased western US forest-fire impacts.
    Materialart: Online-Ressource
    ISSN: 2662-4435
    Sprache: Englisch
    Verlag: Springer Science and Business Media LLC
    Publikationsdatum: 2021
    ZDB Id: 3037243-4
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...