GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2021-12-01
    Description: The duration and magnitude of the North Atlantic spring bloom impacts both higher trophic levels and oceanic carbon sequestration. Nutrient exhaustion offers a general explanation for bloom termination, but detail on which nutrients and their relative influence on phytoplankton productivity, community structure, and physiology is lacking. Here, we address this using nutrient addition bioassay experiments conducted across the midlatitude North Atlantic in June 2017 (late spring). In four out of six experiments, phytoplankton accumulated over 48–72 h following individual additions of either iron (Fe) or nitrogen (N). In the remaining two experiments, Fe and N were serially limiting, that is, their combined addition sequentially enhanced phytoplankton accumulation. Silicic acid (Si) added in combination with N + Fe led to further chlorophyll a (Chl a) enhancement at two sites. Conversely, addition of zinc, manganese, cobalt, vitamin B12, or phosphate in combination with N + Fe did not. At two sites, the simultaneous supply of all six nutrients, in combination with N + Fe, also led to no further Chl a enhancement, but did result in an additional 30–60% particulate carbon accumulation. This particulate carbon accumulation was not matched by a Redfield equivalent of particulate N, characteristic of high C:N organic exudates that enhance cell aggregation and sinking. Our results suggest that growth rates of larger phytoplankton were primarily limited by Fe and/or N, making the availability of these nutrients the main bottom-up factors contributing to spring bloom termination. In addition, the simultaneous availability of other nutrients could modify bloom characteristics and carbon export efficiency.
    Keywords: 577.7 ; mid-latitude North Atlantic ; phytoplankton ; diatom blooming ; experiments
    Language: English
    Type: map
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-26
    Description: © The Author(s), 2018. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Movement Ecology 6 (2018): 3, doi:10.1186/s40462-018-0121-9.
    Description: Albatrosses and other large seabirds use dynamic soaring to gain sufficient energy from the wind to travel large distances rapidly and with little apparent effort. The recent development of miniature bird-borne tracking devices now makes it possible to explore the physical and biological implications of this means of locomotion in detail. Here we use GPS tracking and concurrent reanalyzed wind speed data to model the flight performance of wandering albatrosses Diomedea exulans soaring over the Southern Ocean. We investigate the extent to which flight speed and performance of albatrosses is facilitated or constrained by wind conditions encountered during foraging trips.
    Description: Financial support was provided by the F. Livermore Trust, the Woods Hole Oceanographic Institution emeritus fund and the UK Natural Environment Research Council (grant NE/M017990/1).
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2023-02-08
    Description: The duration and magnitude of the North Atlantic spring bloom impacts both higher trophic levels and oceanic carbon sequestration. Nutrient exhaustion offers a general explanation for bloom termination, but detail on which nutrients and their relative influence on phytoplankton productivity, community structure, and physiology is lacking. Here, we address this using nutrient addition bioassay experiments conducted across the midlatitude North Atlantic in June 2017 (late spring). In four out of six experiments, phytoplankton accumulated over 48–72 h following individual additions of either iron (Fe) or nitrogen (N). In the remaining two experiments, Fe and N were serially limiting, that is, their combined addition sequentially enhanced phytoplankton accumulation. Silicic acid (Si) added in combination with N + Fe led to further chlorophyll a (Chl a) enhancement at two sites. Conversely, addition of zinc, manganese, cobalt, vitamin B12, or phosphate in combination with N + Fe did not. At two sites, the simultaneous supply of all six nutrients, in combination with N + Fe, also led to no further Chl a enhancement, but did result in an additional 30–60% particulate carbon accumulation. This particulate carbon accumulation was not matched by a Redfield equivalent of particulate N, characteristic of high C:N organic exudates that enhance cell aggregation and sinking. Our results suggest that growth rates of larger phytoplankton were primarily limited by Fe and/or N, making the availability of these nutrients the main bottom‐up factors contributing to spring bloom termination. In addition, the simultaneous availability of other nutrients could modify bloom characteristics and carbon export efficiency.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2024-02-07
    Description: Highlights • Oceanic nutrient supply from seabird guano is poorly constrained by field observations. • This was assessed for guano from caught-and-released North Atlantic seabirds. • Guano released nutrients and relieved in situ phytoplankton nutrient limitation. • Guano was modelled to potentially be a major nutrient supply term in summer. • Declining pelagic seabird populations will impact this function. Abstract Nutrients supplied via seabird guano increase primary production in some coastal ecosystems. A similar process may occur in the open ocean. To investigate this directly, we first measured bulk and leachable nutrient concentrations in guano sampled in the North Atlantic. We found that guano was strongly enriched in phosphorus, which was released as phosphate in solution. Nitrogen release was dominated by reduced forms (ammonium and urea) whilst release of nitrate was relatively low. A range of trace elements, including the micronutrient iron, were released. Using in-situ bioassays, we then showed that supply of fresh guano to ambient seawater increases phytoplankton biomass and photochemical efficiencies. Based on these results, modelled seabird distributions, and known defecation rates, we estimate that on annual scales guano is a minor source of nutrients for the surface North Atlantic. However, on shorter timescales in late spring/summer it could be much more important: Estimates of upper-level depositions of phosphorus by seabirds were three orders of magnitude higher than modelled aerosol deposition and comparable to diffusion from deeper waters.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2024-02-07
    Description: Cyclonic ocean eddies drive upwelling of deep waters enhanced in nutrients, which can elevate phytoplankton productivity. At mid‐latitudes in the North Atlantic, satellite images show enhanced chlorophyll‐a associated with eddies. However, surface macronutrient concentrations are often not fully depleted in this region, implying enhanced macronutrient supply is not the primary control. We conducted high resolution sampling through two mid‐latitude Atlantic eddies in late spring, located 800 and 350 km east of the Newfoundland Grand Banks. Waters outside of both eddies had unused residual macronutrients, low dissolved iron, and iron‐stressed phytoplankton. Inside both eddies, plankton biomass was higher and macronutrient concentrations lower. However, full macronutrient drawdown and an absence of iron stress were only present in the eddy nearer the continental shelf. From these two examples, iron supply and proximity to shelf iron sources appear to be important factors regulating productivity and macronutrient utilization in mid‐latitude North Atlantic cyclonic eddies.
    Type: Article , PeerReviewed
    Format: other
    Format: other
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...