GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
Publikationsart
Schlagwörter
Sprache
Erscheinungszeitraum
  • 1
    Publikationsdatum: 2024-04-19
    Beschreibung: The stable water isotopic composition in firn and ice cores provides valuable information on past climatic conditions. Because of uneven accumulation and post‐depositional modifications on local spatial scales up to hundreds of meters, time series derived from adjacent cores differ significantly and do not directly reflect the temporal evolution of the precipitated snow isotopic signal. Hence, a characterization of how the isotopic profile in the snow develops is needed to reliably interpret the isotopic variability in firn and ice cores. By combining digital elevation models of the snow surface and repeated high‐resolution snow sampling for stable water isotope measurements of a transect at the East Greenland Ice‐core Project campsite on the Greenland Ice Sheet, we are able to visualize the buildup and post‐depositional changes of the upper snowpack across one summer season. To this end, 30 cm deep snow profiles were sampled on six dates at 20 adjacent locations along a 40 m transect. Near‐daily photogrammetry provided snow height information for the same transect. Our data shows that erosion and redeposition of the original snowfall lead to a complex stratification in the δ〈sup〉18〈/sup〉O signature. Post‐depositional processes through vapor‐snow exchange affect the near surface snow with d‐excess showing a decrease in surface and near‐surface layers. Our data suggests that the interplay of stratigraphic noise, accumulation intermittency, and local post‐depositional processes form the proxy signal in the upper snowpack.
    Beschreibung: Plain Language Summary: We study the process of the formation of the stable water isotope signal in surface snow on the Greenland Ice Sheet to better understand temperature information which is stored as a climate proxy in snow and ice. Our data consist of high‐resolution surface topography information illustrating the timing and location of snowfall, erosion, and redeposition along a transect of 40 m, as well as stable water isotope records of the upper 30 cm of the snowpack sampled biweekly on 20 positions at the same 40 m long transect. The data cover a 2‐month period during the summer of 2019. We find that the isotopic composition shows spatial variability of layers with low and high values, presumably winter and summer layers. We further observe that prevailing surface structures, such as dunes, influence the snow deposition and contribute to the found variable structure of the climatic information. Eventually, snow accumulation alone cannot explain all of the observed patterns in the isotopic data which is likely related to exchange processes between the snow and the atmosphere which modify the signal in the snow column after deposition.
    Beschreibung: Key Points: Combining digital elevation models and repeated snow sampling reveals the heterogeneous buildup of δ〈sup〉18〈/sup〉O signal in the snow column. Surface structures (stratigraphic noise) substantially contribute to internal heterogeneity in δ〈sup〉18〈/sup〉O signature in the upper snowpack. Proxy signals are formed in the surface layer by local processes, advected downwards with limited post‐depositional influences below 10 cm.
    Beschreibung: Horizon 2020 Framework Programme http://dx.doi.org/10.13039/100010661
    Beschreibung: A. P. Møller Foundation, University of Copenhagen
    Beschreibung: US National Science Foundation, Office of Polar Programs
    Beschreibung: Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research
    Beschreibung: National Institute of Polar Research and Arctic Challenge for Sustainability
    Beschreibung: University of Bergen
    Beschreibung: Trond Mohn Foundation
    Beschreibung: Swiss National Science Foundation
    Beschreibung: French Polar Institute Paul‐Emile Victor, Institute for Geosciences and Environmental Research
    Beschreibung: University of Manitoba
    Beschreibung: Chinese Academy of Sciences
    Beschreibung: Beijing Normal University
    Beschreibung: https://doi.org/10.1594/PANGAEA.954944
    Beschreibung: https://doi.org/10.1594/PANGAEA.954945
    Beschreibung: https://doi.org/10.1594/PANGAEA.951583
    Beschreibung: https://doi.org/10.1594/PANGAEA.925618
    Beschreibung: https://doi.org/10.1594/PANGAEA.928827
    Beschreibung: https://www.agisoft.com/downloads/installer/
    Schlagwort(e): ddc:551 ; proxy ; Greenland ; isotopes ; structure‐from‐motion ; snow accumulation ; ice core
    Sprache: Englisch
    Materialart: doc-type:article
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Publikationsdatum: 2020-01-09
    Beschreibung: The Sentinel Application Platform (SNAP) architecture facilitates Earth Observation data processing. In this work, we present results from a new Snow Processor for SNAP. We also describe physical principles behind the developed snow property retrieval technique based on the analysis of Ocean and Land Colour Instrument (OLCI) onboard Sentinel-3A/B measurements over clean and polluted snow fields. Using OLCI spectral reflectance measurements in the range 400–1020 nm, we derived important snow properties such as spectral and broadband albedo, snow specific surface area, snow extent and grain size on a spatial grid of 300 m. The algorithm also incorporated cloud screening and atmospheric correction procedures over snow surfaces. We present validation results using ground measurements from Antarctica, the Greenland ice sheet and the French Alps. We find the spectral albedo retrieved with accuracy of better than 3% on average, making our retrievals sufficient for a variety of applications. Broadband albedo is retrieved with the average accuracy of about 5% over snow. Therefore, the uncertainties of satellite retrievals are close to experimental errors of ground measurements. The retrieved surface grain size shows good agreement with ground observations. Snow specific surface area observations are also consistent with our OLCI retrievals. We present snow albedo and grain size mapping over the inland ice sheet of Greenland for areas including dry snow, melted/melting snow and impurity rich bare ice. The algorithm can be applied to OLCI Sentinel-3 measurements providing an opportunity for creation of long-term snow property records essential for climate monitoring and data assimilation studies—especially in the Arctic region, where we face rapid environmental changes including reduction of snow/ice extent and, therefore, planetary albedo.
    Repository-Name: EPIC Alfred Wegener Institut
    Materialart: Article , isiRev
    Format: application/pdf
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    Publikationsdatum: 2020-01-27
    Beschreibung: Equatorial volcanic eruptions are known to impact the atmospheric circulation on seasonal time scales through a strengthening of the stratospheric zonal winds followed by dynamic ocean-atmosphere coupling. This emerges as the positive phase of the North Atlantic Oscillation in the first 5years after an eruption. In the North Atlantic, other modes of atmospheric circulation contribute to the climate variability but their response to volcanic eruptions has been less studied. We address this by retrieving the stable water isotopic fingerprint of the four major atmospheric circulation modes over the North Atlantic (Atlantic Ridge, Scandinavian Blocking and the negative and positive phases of the North Atlantic Oscillation (NAO�and NAOþ)) by using monthly precipitation data from Global Network of Isotopes in Precipitation (GNIP) and 500 mb geo-potential height from the 20th Century Reanalysis. The simulated stable isotopic pattern of each atmospheric circulation mode is further used to assess the retrieved pattern. We test if changes in the atmospheric circulation as well as moisture source conditions as a result of volcanic eruptions can be identified by analyzing the winter climate response after both equatorial and high-latitude North Hemispheric volcanic eruptions in data, reanalysis and simulations. We report of an NAOþmode in the first two years after equatorial eruptions followed by NAO � in year 3 due to a decrease in the meridional temperature gradient as a result of volcanic surface cooling. This emerges in both GNIP data as well as reanalysis. Although the detected response is stronger after equatorial eruptions compared to high latitude eruptions, our results show that the response after high latitude eruptions tend to emerge as NAO-� in year 2 followed by NAO+ in year 3–4.
    Repository-Name: EPIC Alfred Wegener Institut
    Materialart: Article , isiRev
    Format: application/pdf
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 4
    Publikationsdatum: 2021-05-21
    Beschreibung: In the context of the Arctic amplification of climate change affecting the regional atmospheric hydrological cycle, it is crucial to characterize the present-day moisture sources of the Arctic. The isotopic composition is an important tool to enhance our understanding of the drivers of the hydrological cycle due to the different molecular characteristics of water stable isotopes during phase change. This study introduces 2 years of continuous in situ water vapour and precipitation isotopic observations conducted since July 2015 in the eastern Siberian Lena delta at the research station on Samoylov Island. The vapour isotopic signals are dominated by variations at seasonal and synoptic timescales. Diurnal variations of the vapour isotopic signals are masked by synoptic variations, indicating low variations of the amplitude of local sources at the diurnal scale in winter, summer and autumn. Low-amplitude diurnal variations in spring may indicate exchange of moisture between the atmosphere and the snow-covered surface. Moisture source diagnostics based on semi-Lagrangian backward trajectories reveal that different air mass origins have contrasting contributions to the moisture budget of the Lena delta region. At the seasonal scale, the distance from the net moisture sources to the arrival site strongly varies. During the coldest months, no contribution from local secondary evaporation is observed. Variations of the vapour isotopic composition during the cold season on the synoptic timescale are strongly related to moisture source regions and variations in atmospheric transport: warm and isotopically enriched moist air is linked to fast transport from the Atlantic sector, while dry and cold air with isotopically depleted moisture is generally associated with air masses moving slowly over northern Eurasia.
    Repository-Name: EPIC Alfred Wegener Institut
    Materialart: Article , isiRev
    Format: application/pdf
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 5
    facet.materialart.
    Unbekannt
    COPERNICUS GESELLSCHAFT MBH
    In:  EPIC3The Cryosphere, COPERNICUS GESELLSCHAFT MBH, 10(5), pp. 1991-2002, ISSN: 1994-0424
    Publikationsdatum: 2017-02-08
    Beschreibung: Along a traverse through North Greenland in May 2015 we collected snow cores up to 2 m depth and analyzed their density and water isotopic composition. A new sampling technique and an adapted algorithm for comparing data sets from different sites and aligning stratigraphic features are presented. We find good agreement of the density layering in the snowpack over hundreds of kilometers, which allows the construction of a representative density profile. The results are supported by an empirical statistical density model, which is used to generate sets of random profiles and validate the applied methods. Furthermore we are able to calculate annual accumulation rates, align melt layers and observe isotopic temperatures in the area back to 2010. Distinct relations of δ18O with both accumulation rate and density are deduced. Inter alia the depths of the 2012 melt layers and high-resolution densities are provided for applications in remote sensing.
    Repository-Name: EPIC Alfred Wegener Institut
    Materialart: Article , isiRev
    Format: application/pdf
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 6
    Publikationsdatum: 2020-01-21
    Beschreibung: The volcanic fingerprint on the winter North Atlantic atmospheric circulation and climate is analyzed in six ensemble runs of ECHAM5/MPI-OM covering 800–2000 CE, both for equatorial and Northern Hemisphere (NH) eruptions. Large volcanic eruptions influence climate on both annual and decadal time scales due to dynamic interactions of different climate components in the Earth's system. It is well known that the North Atlantic Oscillation (NAO) tends to shift towards its positive phase during winter in the first 1–2 years after large tropical volcanic eruptions, causing warming over Europe, but other North Atlantic weather regimes have received less attention. Here we investigate the four dominant weather regimes in the North Atlantic: The negative and positive phase of NAO as well as the Atlantic Ridge, Scandinavian blocking. The volcanic fingerprint is detected as a change in the frequency of occurrence and anomalies in the wind and temperature fields as well as in the sea ice cover. We observe a strong significant increase in the frequency of Atlantic Ridge in the second year after equatorial eruptions that precede the NAO+ detected in year 3–5 as a result of a strong zonal wind anomalies in year 1–2. Evidence for a stronger polar vortex is detected in years 12–14 where NAO+ is detected both as a frequency increase and in the wind and temperature fields. A short-term response is also detected 2–4 years after NH eruptions. The longterm signal after NH eruptions indicate a weak polar vortex around a decade after an eruption. Although the signal after NH eruptions is weaker our results stress the need for further studies. The simulated atmospheric response recorded in ECHAM5 after volcanic eruptions suggest a more dynamic response than previously thought. The methodology used can also be applied to other forcing scenario, for example for future climate projections where the aim is to search for a long-term climate signal.
    Repository-Name: EPIC Alfred Wegener Institut
    Materialart: Article , isiRev
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 7
    Publikationsdatum: 2015-12-09
    Beschreibung: During 7–12 July 2012, extreme moist and warm conditions occurred over Greenland, leading to widespread surface melt. To investigate the physical processes during the atmospheric moisture transport of this event, we study the water vapor isotopic composition using surface in situ observations in Bermuda Island, South Greenland coast (Ivittuut), and northwest Greenland ice sheet (NEEM), as well as remote sensing observations (Infrared Atmospheric Sounding Interferometer (IASI) instrument on board MetOp-A), depicting propagation of similar surface and midtropospheric humidity and
    Repository-Name: EPIC Alfred Wegener Institut
    Materialart: Article , isiRev
    Format: application/pdf
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 8
    facet.materialart.
    Unbekannt
    Nature Publishing Group
    In:  EPIC3Nature Communications, Nature Publishing Group, 10, ISSN: 2041-1723
    Publikationsdatum: 2020-01-21
    Beschreibung: Stable water isotopes are employed as hydrological tracers to quantify the diverse implications of atmospheric moisture for climate. They are widely used as proxies for studying past climate changes, e.g., in isotope records from ice cores and speleothems. Here, we present a new isotopic dataset of both near-surface vapour and ocean surface water from the North Pole to Antarctica, continuously measured from a research vessel throughout the Atlantic and Arctic Oceans during a period of two years. Our observations contribute to a better understanding and modelling of water isotopic composition. The observations reveal that the vapour deuterium excess within the atmospheric boundary layer is not modulated by wind speed, contrary to the commonly used theory, but controlled by relative humidity and sea surface temperature only. In sea ice covered regions, the sublimation of deposited snow on sea ice is a key process controlling the local water vapour isotopic composition.
    Repository-Name: EPIC Alfred Wegener Institut
    Materialart: Article , isiRev
    Format: application/pdf
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 9
    facet.materialart.
    Unbekannt
    In:  EPIC3Steering Committee East Greenland Ice-Core Project (EGRIP), Kopenhagen, Denmark, 2018-11-12-2018-11-16
    Publikationsdatum: 2020-06-08
    Beschreibung: Ice sheets represent one of the main reservoirs in the global climate system archiving information on past climatic conditions. The isotopic composition of stable water isotopes of ice sheets can be used as a temperature proxy and allows the reconstruction of past climates. However, measured isotopic compositions from precipitation differ strongly from surface snow samples. Thus, non-climatic effects (e.g. wind-redistribution) alter the isotopic composition after the deposition. In order to investigate the evolution of the isotopic composition in the upper firn layer (top 10cm) we carried out a comprehensive sampling scheme along a 40m transect throughout the full season at the deep drilling site in North-East Greenland, EastGRIP. Additionally, we tracked snow accumulation with a new method using daily photos to develop elevation models of the snow surface. The evolution of the isotopic composition from the precipitation via the deposition on the snow to the upper firn layer together with information on changes in topography (i.e. the net accumulation based on the photos) allow us to investigate possible relations between these parameters. Complementing this new data set with data from the previous seasons, we aim to investigate the evolution of this temperature proxy with depth and time.
    Repository-Name: EPIC Alfred Wegener Institut
    Materialart: Conference , notRev
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 10
    Publikationsdatum: 2016-10-20
    Beschreibung: Quantifying the magnitude of post-depositional processes affecting the isotopic composition of surface snow is essential for a more accurate interpretation of ice core data. To achieve this, high temporal resolution measurements of both lower atmospheric water vapor and surface snow iso- topic composition are required. This study presents contin- uous measurements of water vapor isotopes performed in East Antarctica (Kohnen station) from December 2013 to January 2014 using a laser spectrometer. Observations have been compared with the outputs of two atmospheric gen- eral circulation models (AGCMs) equipped with water va- por isotopes: ECHAM5-wiso and LMDZ5Aiso. During our monitoring period, the signals in the 2 m air temperature T , humidity mixing ratio q and both water vapor isotopes δD and δ18O are dominated by the presence of diurnal cycles. Both AGCMs simulate similar diurnal cycles with a mean amplitude 30 to 70 % lower than observed, possibly due to an incorrect simulation of the surface energy balance and the boundary layer dynamics. In parallel, snow surface samples were collected each hour over 35 h, with a sampling depth of 2–5 mm. A diurnal cycle in the isotopic composition of the snow surface is observed in phase with the water vapor, reaching a peak-to-peak amplitude of 3 ‰ for δD over 24 h (compared to 36 ‰ for δD in the water vapor). A simple box model treated as a closed system has been developed to study the exchange of water molecules between an air and a snow reservoir. In the vapor, the box model simulations show too much isotopic depletion compared to the observations. Mix- ing with other sources (advection, free troposphere) has to be included in order to fit the observations. At the snow surface, the simulated isotopic values are close to the observations with a snow reservoir of ∼ 5 mm depth (range of the snow sample depth). Our analysis suggests that fractionation oc- curs during sublimation and that vapor–snow exchanges can no longer be considered insignificant for the isotopic compo- sition of near-surface snow in polar regions.
    Repository-Name: EPIC Alfred Wegener Institut
    Materialart: Article , isiRev
    Format: application/pdf
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...