GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
  • 1
    Publikationsdatum: 2022-05-26
    Beschreibung: © The Author(s), 2017. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Biogeosciences 14 (2017): 5099-5114, doi:10.5194/bg-14-5099-2017.
    Beschreibung: Serial oxidation coupled with stable carbon and radiocarbon analysis of sequentially evolved CO2 is a promising method to characterize the relationship between organic carbon (OC) chemical composition, source, and residence time in the environment. However, observed decay profiles depend on experimental conditions and oxidation pathway. It is therefore necessary to properly assess serial oxidation kinetics before utilizing decay profiles as a measure of OC reactivity. We present a regularized inverse method to estimate the distribution of OC activation energy (E), a proxy for bond strength, using serial oxidation. Here, we apply this method to ramped temperature pyrolysis or oxidation (RPO) analysis but note that this approach is broadly applicable to any serial oxidation technique. RPO analysis directly compares thermal reactivity to isotope composition by determining the E range for OC decaying within each temperature interval over which CO2 is collected. By analyzing a decarbonated test sample at multiple masses and oven ramp rates, we show that OC decay during RPO analysis follows a superposition of parallel first-order kinetics and that resulting E distributions are independent of experimental conditions. We therefore propose the E distribution as a novel proxy to describe OC thermal reactivity and suggest that E vs. isotope relationships can provide new insight into the compositional controls on OC source and residence time.
    Beschreibung: This research was supported by the NSF Graduate Research Fellowship Program grant no. 2012126152 (Jordon D. Hemingway), NASA Astrobiology grant no. NNA13AA90A and NSF grant no. EAR-1338810 (Daniel H. Rothman), and the WHOI Independent Study Award (Valier V. Galy).
    Repository-Name: Woods Hole Open Access Server
    Materialart: Article
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Digitale Medien
    Digitale Medien
    New York, NY : American Institute of Physics (AIP)
    Physics of Fluids 2 (1990), S. 2085-2088 
    ISSN: 1089-7666
    Quelle: AIP Digital Archive
    Thema: Physik
    Notizen: The results of numerical simulations of the lattice-Boltzmann equation in three-dimensional porous geometries constructed by the random positioning of penetrable spheres of equal radii are presented. Numerical calculations of the permeability are compared with previously established rigorous variational upper bounds. The numerical calculations approach the variational bounds from below at low solid fractions and are always within one order of magnitude of the best upper bound at high solid fractions ranging up to 0.98. At solid fractions less than 0.2 the calculated permeabilities compare well with the predictions of Brinkman's effective-medium theory, whereas at higher solid fractions a good fit is obtained with a Kozeny–Carman equation.
    Materialart: Digitale Medien
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    Digitale Medien
    Digitale Medien
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Earth and Planetary Sciences 24 (1996), S. 63-87 
    ISSN: 0084-6597
    Quelle: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Thema: Geologie und Paläontologie , Physik
    Notizen: Abstract Recent advances in computational physics allow numerical simulation of three-dimensional complex flows through arbitrarily complex geometries. Moreover, new technology for noninvasive imaging provides detailed three-dimensional tomographic reconstructions of porous rocks with a resolution approaching one micron. These two innovations are leading to new understanding of how the microscopic complexity of natural porous media influences fluid transport at a larger, macroscopic scale. This review describes new insights concerning single-phase and multiphase porous flow derived from numerical simulation. In particular, results concerning scaling relations between macroscopic parameters, the scale dependence of transport properties, and viscous coupling in multicomponent flow are emphasized.
    Materialart: Digitale Medien
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 4
    Digitale Medien
    Digitale Medien
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Earth and Planetary Sciences 28 (2000), S. 571-610 
    ISSN: 0084-6597
    Quelle: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Thema: Geologie und Paläontologie , Physik
    Notizen: Abstract Theories of scaling apply wherever similarity exists across many scales. This similarity may be found in geometry and in dynamical processes. Universality arises when the qualitative character of a system is sufficient to quantitatively predict its essential features, such as the exponents that characterize scaling laws. Within geomorphology, two areas where the concepts of scaling and universality have found application are the geometry of river networks and the statistical structure of topography. We begin this review with a pedagogical presentation of scaling and universality. We then describe recent progress made in applying these ideas to networks and topography. This overview leads to a synthesis that attempts a classification of surface and network properties based on generic mechanisms and geometric constraints. We also briefly review how scaling and universality have been applied to related problems in sedimentology-specifically, the origin of stromatolites and the relation of the statistical properties of submarine-canyon topography to the size distribution of turbidite deposits. Throughout the review, our intention is to elucidate not only the problems that can be solved using these concepts, but also those that cannot.
    Materialart: Digitale Medien
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 5
    Digitale Medien
    Digitale Medien
    [s.l.] : Nature Publishing Group
    Nature 383 (1996), S. 423-425 
    ISSN: 1476-4687
    Quelle: Nature Archives 1869 - 2009
    Thema: Biologie , Chemie und Pharmazie , Medizin , Allgemeine Naturwissenschaft , Physik
    Notizen: [Auszug] The stromatolites analysed in this study form part of a 1.9-Gyr-old subtidal reef developed within the foreland basin of Wopmay orogen, northwestern Canada10'11. The reef is part of the shallow-ing-upward Cowles Lake Formation in which deep basinal limestone rhythmites and siliciclastic turbidites ...
    Materialart: Digitale Medien
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 6
    Digitale Medien
    Digitale Medien
    Springer
    Journal of statistical physics 52 (1988), S. 1119-1127 
    ISSN: 1572-9613
    Schlagwort(e): Cellular automata ; lattice gases ; surface tension ; phase separation ; two-phase flow
    Quelle: Springer Online Journal Archives 1860-2000
    Thema: Physik
    Notizen: Abstract We introduce a new deterministic collision rule for lattice-gas (cellular-automaton) hydrodynamics that yields immiscible two-phase flow. The rule is based on a minimization principle and the conservation of mass, momentum, and particle type. A numerical example demonstrates the spontaneous separation of two phases in two dimensions. Numerical studies show that the surface tension coefficient obeys Laplace's formula.
    Materialart: Digitale Medien
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 7
    Digitale Medien
    Digitale Medien
    Springer
    Journal of statistical physics 56 (1989), S. 517-524 
    ISSN: 1572-9613
    Schlagwort(e): Lattice gases ; cellular automata ; viscosity ; turbulence
    Quelle: Springer Online Journal Archives 1860-2000
    Thema: Physik
    Notizen: Abstract A new irreversible collision rule is introduced for lattice-gas automata. The rule maximizes the flux of momentum in the direction of the local momentum gradient, yielding a negative shear viscosity. Numerical results in 2D show that the negative viscosity leads to the spontaneous ordering of the velocity field, with vorticity resolvable down to one lattice-link length. The new rule may be used in conjunction with previously proposed collision rules to yield a positive shear viscosity lower than the previous rules provide. In particular, Poiseuille flow tests demonstrate a decrease in viscosity by more than a factor of 2.
    Materialart: Digitale Medien
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 8
    Digitale Medien
    Digitale Medien
    Springer
    Journal of statistical physics 81 (1995), S. 181-197 
    ISSN: 1572-9613
    Schlagwort(e): Lattice-gas automata ; immiscible fluids ; phase separation ; spinodal decomposition ; growth dynamics
    Quelle: Springer Online Journal Archives 1860-2000
    Thema: Physik
    Notizen: Abstract The dynamics of phase separation is explored using an immiscible 3D lattice-gas model. Scaling laws for the growth rate and power spectraS(k) of the growth patterns are computed. For small wavenumbersS(k) shows a crossover fromk 2 tok 4 behavior. The theoretical prediction for the asymptotic domain growthR≅t 2/3 is supported by our results. We discuss the possibility to observe an intermediatet scaling. We show the influence of hydrodynamic forces in symmetric and asymmetric mixtures by comparing simulations with and without momentum conservation. The structure functionS(k) is not significantly modified by hydrodynamics, but the growth rate changes clearly. As a general result, it is shown that, in spite of the unusual thermodynamics of this model, many characteristics of the growth dynamics are surprisingly in agreement with the classical theoretical and experimental results.
    Materialart: Digitale Medien
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 9
    Digitale Medien
    Digitale Medien
    Springer
    Journal of statistical physics 81 (1995), S. 199-222 
    ISSN: 1572-9613
    Schlagwort(e): Multiphase flow ; computational techniques ; phase transitions
    Quelle: Springer Online Journal Archives 1860-2000
    Thema: Physik
    Notizen: Abstract A new lattice-gas cellular automaton model for simulating binary fluids in three dimensions is introduced. It is particularly suitable for modeling slow flows of mixtures with complicated interface geometries or within complicated boundaries, such as in the interior of a porous rock. Phase separation is triggered spontaneously in the model by statistical fluctuations and phase domains are approximately isotropic. The measured surface tension is large compared to that in analogous two-dimensional models. The model is applied to a study of the time-dependent effective viscosity of a phase-separating mixture in a simple shear flow. Results qualitatively match both experiment and theory: the viscosity increases rapidly, then decays gradually to a steady-state value which is larger than the viscosity of the pure fluids. The effective viscosity increases with increasing concentration and decreases with increasing strain rate.
    Materialart: Digitale Medien
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 10
    Digitale Medien
    Digitale Medien
    Springer
    Journal of statistical physics 93 (1998), S. 477-500 
    ISSN: 1572-9613
    Schlagwort(e): Erosion ; anisotropy ; stochastic equation ; renormalization group
    Quelle: Springer Online Journal Archives 1860-2000
    Thema: Physik
    Notizen: Abstract We formulate a stochastic equation to model the erosion of a surface with fixed inclination. Because the inclination imposes a preferred direction for material transport, the problem is intrinsically anisotropic. At zeroth order, the anisotropy manifests itself in a linear equation that predicts that the prefactor of the surface height–height correlations depends on direction. The first higher order nonlinear contribution from the anisotropy is studied by applying the dynamic renormalization group. Assuming an inhomogeneous distribution of soil substrate that is modeled by a source of static noise, we estimate the scaling exponents at first order in an ε-expansion. These exponents also depend on direction. We compare these predictions with empirical measurements made from real landscapes and find good agreement. We propose that our anisotropic theory applies principally to small scales and that a previously proposed isotropic theory applies principally to larger scales. Lastly, by considering our model as a transport equation for a driven diffusive system, we construct scaling arguments for the size distribution of erosion “events” or “avalanches.” We derive a relationship between the exponents characterizing the surface anisotropy and the avalanche size distribution, and indicate how this result may be used to interpret previous findings of power-law size distributions in real submarine avalanches.
    Materialart: Digitale Medien
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...