GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
Publikationsart
Erscheinungszeitraum
  • 1
    facet.materialart.
    Unbekannt
    In:  EPIC3American Geophysical Union Conference, Online, 2020-12-01-2020-12-31
    Publikationsdatum: 2021-02-02
    Beschreibung: Arctic coastlines are increasingly vulnerable to erosion due to warmer temperatures destabilizing frozen cliffs, reduced protection of sea ice cover and bigger waves, especially as freeze-up becomes delayed further into the fall storm season. We have coupled a bathystrophic storm surge model to a simple numerical model of erosion of a partially frozen cliff and beach. This is a first step towards parameterization of Arctic shoreline erosion for larger-scale models that are not able to resolve the fine spatial scale (0 - 40m) needed to capture shoreline erosion rates from years to decades.
    Repository-Name: EPIC Alfred Wegener Institut
    Materialart: Conference , notRev
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    facet.materialart.
    Unbekannt
    The Oceans Race
    In:  EPIC3Project meeting for the Ocean's Race, Online, The Oceans Race
    Publikationsdatum: 2021-01-24
    Beschreibung: Invited talk to inform professional sailors and associated sustainability projects (11th Hour Racing) about the ocean's role in regulating climate.
    Repository-Name: EPIC Alfred Wegener Institut
    Materialart: Conference , notRev
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    facet.materialart.
    Unbekannt
    Geo.X Talk Series (AWI)
    In:  EPIC3Geo.X Talk Series, Online, Geo.X Talk Series (AWI)
    Publikationsdatum: 2021-02-02
    Repository-Name: EPIC Alfred Wegener Institut
    Materialart: Conference , notRev
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 4
    facet.materialart.
    Unbekannt
    In:  EPIC3ESA Sea State CCI: User Consultation Meeting #2, Online, 2021-03-23-2021-03-25
    Publikationsdatum: 2021-04-26
    Beschreibung: Wind and wave conditions are a primary concern for many people living along the coastline, but when considering the partially frozen coastline in the Arctic, this concern is highlighted by the cascading detrimental thawing effects on indigenous cultural sites and subsistence practices. Media coverage has extensively shown cemeteries being washed away into the sea, ice cellars being inundated with floodwaters, and entire villages planning to relocate without having the funds to do so. If we take a look further offshore, sea state directly impacts the safety of subsistence hunters travelling by boat, leading to the fact that a lengthening open water season does not necessarily mean the same increase in the number of safely boat-able days. Beyond the scope of native communities, but still well within the lens of the media, professional sailors are constantly looking for products that improve their knowledge and forecasts of sea state to better inform which routes and actions they will take during months-long competitions. This talk will contain a broad overview of the specific uses of wave and wind information, citing specific examples from the authors’ own experience on coastal erosion model development and interaction with Arctic native coastal communities. A main goal of this talk is also to illuminate the incentives for the scientific community to be actively engaged in improving operational sea state products, from Arctic indigenous coastal communities to professional sailors, particularly in light of the increasing media attention to the general public.
    Repository-Name: EPIC Alfred Wegener Institut
    Materialart: Conference , notRev
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 5
    Publikationsdatum: 2021-02-28
    Beschreibung: Permafrost coasts make up roughly one third of all coasts worldwide. Their erosion leads to the release of previously locked organic carbon, changes in ecosystems and the destruction of cultural heritage, infrastructure and whole communities. Since rapid environmental changes lead to an intensification of Arctic coastal dynamics, it is of great importance to adequately quantify current and future coastal changes. However, the remoteness of the Arctic and scarcity of data limit our understanding of coastal dynamics at a pan-Arctic scale and prohibit us from getting a complete picture of the diversity of impacts on the human and natural environment. In a joint effort of the EU project NUNATARYUK and the NSF project PerCS-Net, we seek to close this knowledge gap by collecting and analyzing all accessible high-resolution shoreline position data for the Arctic coastline. These datasets include geographical coordinates combined with coastal positions derived from archived data, surveying data, air and space born remote sensing products, or LiDAR products. The compilation of this unique dataset will enable us to reach unprecedented data coverage and will allow us a first insight into the magnitude and trends of shoreline changes on a pan-Arctic scale with locally highly resolved temporal and spatial changes in shoreline dynamics. By comparing consistently derived shoreline change data from all over the Arctic we expect that the trajectory of coastal change in the Arctic becomes evident. A synthesis of some initial results will be presented in the 2020 Arctic Report Card on Arctic Coastal Dynamics. This initiative is an ongoing effort – new data contributions are welcome!
    Repository-Name: EPIC Alfred Wegener Institut
    Materialart: Conference , notRev
    Format: application/pdf
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 6
    facet.materialart.
    Unbekannt
    American Geophysical Union
    In:  EPIC3American Geophysical Union Conference 2021, Hybrid Online and in New Orleans, 2021-12-13-2021-12-17AGU 2021, American Geophysical Union
    Publikationsdatum: 2022-02-15
    Beschreibung: As air temperatures rise and sea ice cover declines in the Arctic, permafrost coastal cliffs thaw more rapidly and wave energy rises. Thus, as the open water season continues to lengthen, climate change triggers a large part of the Arctic shoreline to become increasingly vulnerable to erosion. Arctic erosion supplies nutrient-laden and carbon-rich sediment into nearshore ecosystems. A retreating coastline also has consequences for residential, cultural, and industrial infrastructure. Despite its importance, erosion is currently neglected in global climate models, and existing physics-based numerical models of Arctic shoreline erosion are too complex and regionally-focused to be applied on a pan-Arctic scale. Here, we apply our simplified numerical erosion model, ArcticBeach v1.0, to the entire Arctic coastline. ArcticBeach v1.0 has previously been shown to simulate retreat rates at two sites that differ substantially in their main mechanisms of retreat (sub-aerial erosion/thaw slumping versus notch/block erosion). The model uses heat and sediment volume balances in order to predict horizontal cliff retreat and vertical erosion of a fronting beach. It contains an erosion module that uses empirical equations to estimate cross-shore sediment transport, coupled to a storm surge module forced by wind. We present Arctic maps of regional variation in trends in 2-meter air temperature, sea ice concentration, and wind speed.
    Repository-Name: EPIC Alfred Wegener Institut
    Materialart: Conference , notRev
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 7
    Publikationsdatum: 2024-01-30
    Beschreibung: Industrial contaminants accumulated in Arctic permafrost regions have been largely neglected in existing climate impact analyses. Here we identify about 4500 industrial sites where potentially hazardous substances are actively handled or stored in the permafrost-dominated regions of the Arctic. Furthermore, we estimate that between 13,000 and 20,000 contaminated sites are related to these industrial sites. Ongoing climate warming will increase the risk of contamination and mobilization of toxic substances since about 1100 industrial sites and 3500 to 5200 contaminated sites located in regions of stable permafrost will start to thaw before the end of this century. This poses a serious environmental threat, which is exacerbated by climate change in the near future. To avoid future environmental hazards, reliable long-term planning strategies for industrial and contaminated sites are needed that take into account the impacts of cimate change.
    Repository-Name: EPIC Alfred Wegener Institut
    Materialart: Article , isiRev
    Format: application/pdf
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 8
    Publikationsdatum: 2024-04-20
    Beschreibung: The Arctic is greatly affected by climate change. Increasing air temperatures drive permafrost thaw and an increase in coastal erosion and river discharge. This results in a greater input of sediment and organic matter into nearshore waters, impacting ecosystems by reducing light transmission through the water column and altering biogeochemistry. This potentially results in impacts on the subsistence economy of local people as well as the climate due to the transformation of suspended organic matter into greenhouse gases. Even though the impacts of increased suspended sediment concentrations and turbidity in the Arctic nearshore zone are well-studied, the mechanisms underpinning this increase are largely unknown. Wave energy and tides drive the level of turbidity in the temperate and tropical parts of the world, and this is generally assumed to also be the case in the Arctic. However, the tidal range is considerably lower in the Arctic, and processes related to the occurrence of permafrost have the potential to greatly contribute to nearshore turbidity. In this study, we use high-resolution satellite imagery alongside in situ and ERA5 reanalysis data of ocean and climate variables in order to identify the drivers of nearshore turbidity, along with its seasonality in the nearshore waters of Herschel Island Qikiqtaruk, in the western Canadian Arctic. Nearshore turbidity correlates well to wind direction, wind speed, significant wave height, and wave period. Nearshore turbidity is superiorly correlated to wind speed at the Beaufort Shelf compared to in situ measurements at Herschel Island Qikiqtaruk, showing that nearshore turbidity, albeit being of limited spatial extent, is influenced by large-scale weather and ocean phenomenons. We show that, in contrast to the temperate and tropical ocean, freshly eroded material is the predominant driver of nearshore turbidity in the Arctic, rather than resuspension, which is caused by the vulnerability of permafrost coasts to thermo-erosion.
    Repository-Name: EPIC Alfred Wegener Institut
    Materialart: Article , isiRev , info:eu-repo/semantics/article
    Format: application/pdf
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 9
    facet.materialart.
    Unbekannt
    Frontiers
    In:  EPIC3Frontiers in Earth Science, Frontiers, 10, pp. 962208-962208, ISSN: 2296-6463
    Publikationsdatum: 2024-05-07
    Beschreibung: In the Arctic, air temperatures are increasing and sea ice is declining, resulting in larger waves and a longer open water season, all of which intensify the thaw and erosion of ice-rich coasts. Climate change has been shown to increase the rate of Arctic coastal erosion, causing problems for Arctic cultural heritage, existing industrial, military, and civil infrastructure, as well as changes in nearshore biogeochemistry. Numerical models that reproduce historical and project future Arctic erosion rates are necessary to understand how further climate change will affect these problems, and no such model yet exists to simulate the physics of erosion on a pan-Arctic scale. We have coupled a bathystrophic storm surge model to a simplified physical erosion model of a permafrost coastline. This Arctic erosion model, called ArcticBeach v1.0, is a first step toward a physical parameterization of Arctic shoreline erosion for larger-scale models. It is forced by wind speed and direction, wave period and height, sea surface temperature, all of which are masked during times of sea ice cover near the coastline. Model tuning requires observed historical retreat rates (at least one value), as well as rough nearshore bathymetry. These parameters are already available on a pan-Arctic scale. The model is validated at three study sites at 1) Drew Point (DP), Alaska, 2) Mamontovy Khayata (MK), Siberia, and 3) Veslebogen Cliffs, Svalbard. Simulated cumulative retreat rates for DP and MK respectively (169 and 170 m) over the time periods studied at each site (2007–2016, and 1995–2018) are found to the same order of magnitude as observed cumulative retreat (172 and 120 m). The rocky Veslebogen cliffs have small observed cumulative retreat rates (0.05 m over 2014–2016), and our model was also able to reproduce this same order of magnitude of retreat (0.08 m). Given the large differences in geomorphology between the study sites, this study provides a proof-of-concept that ArcticBeach v1.0 can be applied on very different permafrost coastlines. ArcticBeach v1.0 provides a promising starting point to project retreat of Arctic shorelines, or to evaluate historical retreat in places that have had few observations.
    Repository-Name: EPIC Alfred Wegener Institut
    Materialart: Article , isiRev
    Format: application/pdf
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...