GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2013-02-22
    Description: Ageing is the predominant risk factor for cardiovascular diseases and contributes to a significantly worse outcome in patients with acute myocardial infarction. MicroRNAs (miRNAs) have emerged as crucial regulators of cardiovascular function and some miRNAs have key roles in ageing. We propose that altered expression of miRNAs in the heart during ageing contributes to the age-dependent decline in cardiac function. Here we show that miR-34a is induced in the ageing heart and that in vivo silencing or genetic deletion of miR-34a reduces age-associated cardiomyocyte cell death. Moreover, miR-34a inhibition reduces cell death and fibrosis following acute myocardial infarction and improves recovery of myocardial function. Mechanistically, we identified PNUTS (also known as PPP1R10) as a novel direct miR-34a target, which reduces telomere shortening, DNA damage responses and cardiomyocyte apoptosis, and improves functional recovery after acute myocardial infarction. Together, these results identify age-induced expression of miR-34a and inhibition of its target PNUTS as a key mechanism that regulates cardiac contractile function during ageing and after acute myocardial infarction, by inducing DNA damage responses and telomere attrition.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Boon, Reinier A -- Iekushi, Kazuma -- Lechner, Stefanie -- Seeger, Timon -- Fischer, Ariane -- Heydt, Susanne -- Kaluza, David -- Treguer, Karine -- Carmona, Guillaume -- Bonauer, Angelika -- Horrevoets, Anton J G -- Didier, Nathalie -- Girmatsion, Zenawit -- Biliczki, Peter -- Ehrlich, Joachim R -- Katus, Hugo A -- Muller, Oliver J -- Potente, Michael -- Zeiher, Andreas M -- Hermeking, Heiko -- Dimmeler, Stefanie -- England -- Nature. 2013 Mar 7;495(7439):107-10. doi: 10.1038/nature11919. Epub 2013 Feb 20.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute for Cardiovascular Regeneration, Centre of Molecular Medicine, Goethe University Frankfurt, 60590 Frankfurt, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23426265" target="_blank"〉PubMed〈/a〉
    Keywords: Aging/genetics/pathology/*physiology ; Animals ; Apoptosis ; DNA Damage ; Fibrosis/genetics/pathology ; Gene Deletion ; *Gene Expression Regulation ; Gene Knockout Techniques ; Genetic Therapy ; Heart/*physiology ; Mice ; Mice, Inbred C57BL ; MicroRNAs/*genetics/metabolism ; Myocardial Infarction/genetics/pathology/therapy ; Myocardium/cytology/*metabolism/pathology ; Myocytes, Cardiac/cytology/metabolism/pathology ; Substrate Specificity ; Telomere/genetics/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2014-08-28
    Description: Aims MicroRNA (miR)-92a is an important regulator of endothelial proliferation and angiogenesis after ischaemia, but the effects of miR-92a on re-endothelialization and neointimal lesion formation after vascular injury remain elusive. We tested the effects of lowering miR-92a levels using specific locked nucleic acid (LNA)-based antimiRs as well as endothelial-specific knock out of miR-92a on re-endothelialization and neointimal formation after wire-induced injury of the femoral artery in mice. Methods and results MiR-92a was significantly up-regulated in neointimal lesions following wire-induced injury. Pre-miR-92a overexpression resulted in repression of the direct miR-92a target genes integrin α5 and sirtuin1, and reduced eNOS expression in vitro . MiR-92a impaired proliferation and migration of endothelial cells but not smooth muscle cells. In vivo , systemic inhibition of miR-92a expression with LNA-modified antisense molecules resulted in a significant acceleration of re-endothelialization of the denuded vessel area. Genetic deletion of miR-92a in Tie2-expressing cells, representing mainly endothelial cells, enhanced re-endothelialization, whereas no phenotype was observed in mice lacking miR-92a expression in haematopoietic cells. The enhanced endothelial recovery was associated with reduced accumulation of leucocytes and inhibition of neointimal formation 21 days after injury and led to the de-repression of the miR-92a targets integrin α5 and sirtuin1. Conclusion Our data indicate that inhibition of endothelial miR-92a attenuates neointimal lesion formation by accelerating re-endothelialization and thus represents a putative novel mechanism to enhance the functional recovery following vascular injury.
    Print ISSN: 0008-6363
    Electronic ISSN: 1755-3245
    Topics: Medicine
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    American Heart Association (AHA)
    Publication Date: 2013-06-21
    Keywords: Smooth muscle proliferation and differentiation, Endothelium/vascular type/nitric oxide
    Print ISSN: 0009-7330
    Electronic ISSN: 1524-4571
    Topics: Medicine
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2014-03-28
    Keywords: Other Vascular biology
    Print ISSN: 0009-7330
    Electronic ISSN: 1524-4571
    Topics: Medicine
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2015-11-17
    Description: Circulating angiogenic cells (CACs) are monocyte-derived cells with endothelial characteristics, which contribute to both angiogenesis and arteriogenesis in a paracrine way. Interferon-β (IFN-β) is known to inhibit these divergent processes in animals and patients. We hypothesized that IFN-β might act by affecting the differentiation and function of CACs. CACs were cultured from peripheral blood mononuclear cells and phenotypically characterized by surface expression of monocytic and endothelial markers. IFN-β significantly reduced the number of CACs by 18–64%. Apoptosis was not induced by IFN-β, neither in mononuclear cells during differentiation, nor after maturation to CACs. Rather, IFN-β impaired adhesion to, and spreading on, fibronectin, which was dependent on α 5 β 1 (VLA-5)-integrin. IFN-β affected the function of VLA-5 in mature CACs, leading to rounding and detachment of cells, by induction of calpain 1 activity. Cell rounding and detachment was completely reversed by inhibition of calpain 1 activity in mature CACs. During in vitro capillary formation, CAC addition and calpain 1 inhibition enhanced sprouting of endothelial cells to a comparable extent, but were not sufficient to rescue tube formation in the presence of IFN-β. We show that the IFN-β-induced reduction of the numbers of in vitro differentiated CACs is based on activation of calpain 1, resulting in an attenuated adhesion to extracellular matrix proteins via VLA-5. In vivo, this could lead to inhibition of vessel formation due to reduction of the locally recruited CAC numbers and their paracrine angiogenic factors.
    Print ISSN: 0363-6135
    Electronic ISSN: 1522-1539
    Topics: Medicine
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2015-10-23
    Description: Rationale: Circular RNAs (circRNAs) are noncoding RNAs generated by back splicing. Back splicing has been considered a rare event, but recent studies suggest that circRNAs are widely expressed. However, the expression, regulation, and function of circRNAs in vascular cells is still unknown. Objective: Here, we characterize the expression, regulation, and function of circRNAs in endothelial cells. Methods and Results: Endothelial circRNAs were identified by computational analysis of ribo-minus RNA generated from human umbilical venous endothelial cells cultured under normoxic or hypoxic conditions. Selected circRNAs were biochemically characterized, and we found that the majority of them lacks polyadenylation, is resistant to RNase R digestion and localized to the cytoplasm. We further validated the hypoxia-induced circRNAs cZNF292, cAFF1, and cDENND4C, as well as the downregulated cTHSD1 by reverse transcription polymerase chain reaction in cultured endothelial cells. Cloning of cZNF292 validated the predicted back splicing of exon 4 to a new alternative exon 1A. Silencing of cZNF292 inhibited cZNF292 expression and reduced tube formation and spheroid sprouting of endothelial cells in vitro. The expression of pre-mRNA or mRNA of the host gene was not affected by silencing of cZNF292. No validated microRNA-binding sites for cZNF292 were detected in Argonaute high-throughput sequencing of RNA isolated by cross-linking and immunoprecipitation data sets, suggesting that cZNF292 does not act as a microRNA sponge. Conclusions: We show that the majority of the selected endothelial circRNAs fulfill all criteria of bona fide circRNAs. The circRNA cZNF292 exhibits proangiogenic activities in vitro. These data suggest that endothelial circRNAs are regulated by hypoxia and have biological functions.
    Keywords: Angiogenesis, Cell Biology/Structural Biology
    Print ISSN: 0009-7330
    Electronic ISSN: 1524-4571
    Topics: Medicine
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2014-06-21
    Print ISSN: 1079-5642
    Electronic ISSN: 1524-4636
    Topics: Medicine
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2013-01-18
    Description: Extracellular microRNAs (miRNA) are present in most biological fluids, relatively stable, and hold great potential for disease biomarkers and novel therapeutics. Circulating miRNAs are transported by membrane-derived vesicles (exosomes and microparticles), lipoproteins, and other ribonucleoprotein complexes. Evidence suggests that miRNAs are selectively exported from cells with distinct signatures that have been found to be altered in many pathophysiologies, including cardiovascular disease. Protected from plasma ribonucleases by their carriers, functional miRNAs are delivered to recipient cells by various routes. Transferred miRNAs use cellular machinery to reduce target gene expression and alter cellular phenotype. Similar to soluble factors, miRNAs mediate cell-to-cell communication linking disparate cell types, diverse biological mechanisms, and homeostatic pathways. Although significant advances have been made, miRNA intercellular communication is full of complexities and many questions remain. This review brings into focus what is currently known and outstanding in a novel field of study with applicability to cardiovascular disease.
    Keywords: Cell signalling/signal transduction, Gene regulation, Lipid and lipoprotein metabolism, Other Research
    Print ISSN: 1079-5642
    Electronic ISSN: 1524-4636
    Topics: Medicine
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    facet.materialart.
    Unknown
    American Heart Association (AHA)
    Publication Date: 2012-11-09
    Print ISSN: 0009-7330
    Electronic ISSN: 1524-4571
    Topics: Medicine
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2013-03-23
    Description: Aims Ageing of the immune system, immunosenescence, is characterized by impaired lymphopoiesis, especially B-lymphocyte maturation, and is a hallmark of chronic heart failure (CHF). MicroRNAs (miRNAs) are non-coding, small RNAs, which post-transcriptionally control gene expression of multiple target genes. The miR-181 family is known to control haematopoietic lineage differentiation. Here, we study the role of the miR-181 family in immunosenescence and CHF. Methods and results We conducted a clinical study analysing peripheral blood (PB) for miRNA expression and leucocyte distribution of young healthy controls (25 ± 4 years; n = 30), aged healthy controls (64 ± 5 years; n = 13), and age-matched CHF patients (64 ± 11years; n = 18). The expression of miR-181 family members was reduced, whereas miR-34a was increased in PB of aged individuals. In particular, miR-181c was further reduced in age-matched CHF patients. In PB, we observed reduced numbers of lymphocytes, in particular cytotoxic T cells and B cells, with rising age, and the expression of miR-181 correlated with the number of B cells. Notably, in CHF patients, ischaemic heart failure was associated with a further reduction of total B cells as well as their subpopulations, such as memory B cells, compared with age-matched healthy volunteers. Conclusions Ageing- and CHF-associated changes in PB leucocyte subsets are paralleled by alterations in the expression of miRNAs involved in lymphopoiesis, which might play an important role in the age-related and CHF-mediated dysregulation of immune functions resulting in immunosenescence. Furthermore, miR-181c may serve as a marker for reduced immune functions in CHF patients.
    Print ISSN: 1388-9842
    Electronic ISSN: 1879-0844
    Topics: Medicine
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...