GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    facet.materialart.
    Unknown
    AGU (American Geophysical Union)
    In:  Journal of Geophysical Research: Oceans, 107 (C1). 10.1029-10.1040.
    Publication Date: 2018-04-18
    Description: Three deep anticyclonic eddies of a species only reported once before [ Gordon and Greengrove, 1986 ] were intersected by hydrographic lines of the World Ocean Circulation Experiment (WOCE) and South Atlantic Ventilation Experiment (SAVE) programs in the Argentine Basin. The vortices are centered near 3500 m depth at the interface between North Atlantic Deep Water and Bottom Water. They have ∼1500-m-thick cores containing Lower Circumpolar Deep Water and a dynamic influence that may span up to two thirds of the water column. As one eddy was observed just downstream of the western termination of the Falkland Escarpment, a destabilization of the deep boundary current by the sudden slope relaxation is suggested as a potential cause of eddy formation. Besides isopycnal interleaving at the eddy perimeters, strongly eroded core properties in the upper parts of the lenses, associated with low density ratios, hint at double diffusion at the top of the structures as another major decay mechanism. The presence of an eddy in the northern Argentine Basin shows the possibility for a northward drift of the vortices, in this basin at least. Deep events in recent current measurements from the Vema Channel are presented that raise the question of further equatorward motion to the Brazil Basin.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    OceanObs'09
    In:  In: Proceedings of the "OceanObs'09: Sustained Ocean Observations and Information for Society" Conference. , ed. by Hall, J., Harrison, D. E. and Stammer, D. ESA Publication, WPP-306 . OceanObs'09, Venice, Italy.
    Publication Date: 2012-07-06
    Description: of the global combined atmosphere-ocean heat flux and so is important for the mean climate of the Atlantic sector of the Northern Hemisphere. This meridional heat flux is accomplished by both the Atlantic Meridional Overturning Circulation (AMOC) and by basin-wide horizontal gyre circulations. In the North Atlantic subtropical latitudes the AMOC dominates the meridional heat flux, while in subpolar latitudes and in the subtropical South Atlantic the gyre circulations are also important. Climate models suggest the AMOC will slow over the coming decades as the earth warms, causing widespread cooling in the Northern hemisphere and additional sea-level rise. Monitoring systems for selected components of the AMOC have been in place in some areas for decades, nevertheless the present observational network provides only a partial view of the AMOC, and does not unambiguously resolve the full variability of the circulation. Additional observations, building on existing measurements, are required to more completely quantify the Atlantic meridional heat transport. A basin-wide monitoring array along 26.5°N has been continuously measuring the strength and vertical structure of the AMOC and meridional heat transport since March 31, 2004. The array has demonstrated its ability to observe the AMOC variability at that latitude and also a variety of surprising variability that will require substantially longer time series to understand fully. Here we propose monitoring the Atlantic meridional heat transport throughout the Atlantic at selected critical latitudes that have already been identified as regions of interest for the study of deep water formation and the strength of the subpolar gyre, transport variability of the Deep Western Boundary Current (DWBC) as well as the upper limb of the AMOC, and inter-ocean and intrabasin exchanges with the ultimate goal of determining regional and global controls for the AMOC in the North and South Atlantic Oceans. These new arrays will continuously measure the full depth, basin-wide or choke-point circulation and heat transport at a number of latitudes, to establish the dynamics and variability at each latitude and then their meridional connectivity. Modeling studies indicate that adaptations of the 26.5°N type of array may provide successful AMOC monitoring at other latitudes. However, further analysis and the development of new technologies will be needed to optimize cost effective systems for providing long term monitoring and data recovery at climate time scales. These arrays will provide benchmark observations of the AMOC that are fundamental for assimilation, initialization, and the verification of coupled hindcast/forecast climate models.
    Type: Book chapter , NonPeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2017-08-23
    Description: Three interrelated climate phenomena are at the center of the Climate Variability and Predictability (CLIVAR) Atlantic research: tropical Atlantic variability (TAV), the North Atlantic Oscillation (NAO), and the Atlantic meridional overturning circulation (MOC). These phenomena produce a myriad of impacts on society and the environment on seasonal, interannual, and longer time scales through variability manifest as coherent fluctuations in ocean and land temperature, rainfall, and extreme events. Improved understanding of this variability is essential for assessing the likely range of future climate fluctuations and the extent to which they may be predictable, as well as understanding the potential impact of human-induced climate change. CLIVAR is addressing these issues through prioritized and integrated plans for short-term and sustained observations, basin-scale reanalysis, and modeling and theoretical investigations of the coupled Atlantic climate system and its links to remote regions. In this paper, a brief review of the state of understanding of Atlantic climate variability and achievements to date is provided. Considerable discussion is given to future challenges related to building and sustaining observing systems, developing synthesis strategies to support understanding and attribution of observed change, understanding sources of predictability, and developing prediction systems in order to meet the scientific objectives of the CLIVAR Atlantic program.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2024-02-07
    Description: The variability of the Atlantic Meridional Overturning Circulation (AMOC) has considerable impacts on the global climate system. Past studies have shown that changes in the South Atlantic control the stability of the AMOC and drive an important part of its variability. That is why significant resources have been invested in a South (S)AMOC observing system. In January 2017, the RV Maria S. Merian conducted the first GO‐SHIP hydrographic transect along the SAMOC‐Basin Wide Array (SAMBA) line at 34.5°S in the South Atlantic. This paper presents estimates of meridional volume, freshwater (MFT), and heat (MHT) transports through the line using the slow varying geostrophic density field and direct velocity observations. An upper and an abyssal overturning cell are identified with a strength of 15.64 ± 1.39 Sv and 2.4 ± 1.6 Sv, respectively. The net northward MHT is 0.27 ± 0.10 PW, increasing by 0.12 PW when we remove the observed mesoscale eddies with a climatology derived from the Argo floats data set. We attribute this change to an anomalous predominance of cold core eddies during the cruise period. The highest velocities are observed in the western boundary, within the Brazil and the Deep Western Boundary currents. These currents appear as a continuous deep jet located 150 km off the slope squeezed between two cyclonic eddies. The zonal changes in water masses properties and velocity denote the imprint of exchange pathways with both the Southern and the Indian oceans. Key Points: ● Overturning maximum is 15.64 ± 1.39 Sv; Meridional heat and freshwater transport are 0.27 ± 0.10 PW and 0.23 ± 0.02 Sv, respectively ● Excluding the mesoscale eddies from the section increased the meridional heat transport by 0.12 PW ● The distribution of water masses and currents reflects the favorable position of the section for observing
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2023-07-06
    Description: The South Atlantic Meridional Overturning Circulation (SAMOC) observing system has evolved tremendously since 2007, and has substantially improved our understanding of the dynamics and variability of the upper, deep, and abyssal South Atlantic circulation from daily to interannual time-scales. However, the SAMOC daily time series derived from moored arrays are still relatively short and are only available at 11°S and 34.5°S. To expand the SAMOC time series in space and time, we derived monthly zonal trans-basin temperature (T) and salinity (S) sections since 1993 at four latitudes (20°S, 25°S, 30°S, and 34.5°S) based on historical relationships between T, S, and satellite sea level. The resulting meridional overturning circulation (MOC) and meridional heat transport (MHT) estimates at 20°S, 25°S, and 30°S are significantly correlated with each other at near zero lag, however correlations with the estimates at 34.5°S are somewhat lower. Although the overturning contribution dominates changes in the MHT at all four latitudes, the gyre contribution increases southward, reaching 30% of the explained MHT variability at 34.5°S. These 30-year monthly records indicate that the dominant mechanism controlling the MOC/MHT variability alternates between wind forcing and internal ocean dynamics. Therefore, both mechanisms must be monitored to fully capture changes in the MOC/MHT. These estimates demonstrate a linkage between the tropical Pacific forcing and heat content changes in the subtropical South Atlantic, as well as the impact of the MOC/MHT on extreme weather events, and provide context for measurements obtained from the SAMOC moored arrays.
    Language: English
    Type: info:eu-repo/semantics/conferenceObject
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    In:  XXVIII General Assembly of the International Union of Geodesy and Geophysics (IUGG)
    Publication Date: 2023-07-13
    Description: The surface wind variability is a key factor inducing changes in the circulation, biogeochemistry, and ecosystems over continental shelves. Wind-induced changes in sea surface height modulate the cross-shore pressure gradient and lead to changes in the along-shore geostrophic flow. In the western South Atlantic continental shelf north of about 42 ºS, the wind variability modulates the northward advection of cold, low-salinity, high-nutrient waters. We analyze the impact of surface meridional wind variations from the ERA5 reanalysis on sea satellite-derived sea surface temperature (SST) and sea level anomaly (SLA) from microwave optimum interpolation SST and AVISO/Copernicus, respectively over the South Atlantic continental shelf between 35 and 55 °S in the past 20 years. The results indicate that the meridional wind variations modulate the temperature changes over the continental shelf at synoptic and interannual scales. South of about 50 ºS other processes appear to control the SLA variations. At the interannual scale, a significant correlation (r ∼ 0.64) is observed between the first EOF of the meridional wind anomalies and the second EOF of sea level anomalies, respectively. This mode of SLA variability shows a meridional dipole pattern on the Patagonian shelf between 35 and 55 °S. Our results suggest that future variations in wind patterns may have a significant impact on the circulation and the water mass properties over the western South Atlantic shelf.
    Language: English
    Type: info:eu-repo/semantics/conferenceObject
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-07-17
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2021-05-19
    Description: The oceanic circulation over the southwestern Atlantic shelf is influenced by large tidal amplitudes, substantial freshwater discharges, high wind speeds and – most importantly – by its proximity to two of the largest western boundary currents of the world ocean: the Brazil and Malvinas currents. This review article aims to discriminate the dynamical processes controlling the interaction between this extensive shelf region and the deep-ocean. The discussion is focused on two broad regions: the South Brazil Bight to the north, and Patagonia to the south. The exchanges between the Brazil Current and the South Brazil Bight are characterized by the intermittent development of eddies and meanders of the Brazil Current at the shelfbreak. However, it is argued that this is not the only – nor the most important – influence of the Brazil Current on the shelf. Numerical simulations show that the thermohaline structure of the South Brazil Bight can be entirely ascribed to steady state, bottom boundary layer interactions between the shelf and the Brazil Current. The Malvinas Current does not show the development of eddies and meanders, but its influence on the Patagonian shelf is not less important. Models and observations indicate that the Malvinas Current not only controls the shelfbreak dynamics and cross-shelf exchanges but also influences the circulation in the shelf's interior.
    Description: Published
    Repository Name: AquaDocs
    Type: Journal Contribution , Refereed
    Format: pp.983-995
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2021-05-19
    Description: The thermohaline structure across the tidal fronts of the continental shelf off Patagonia is analyzed using historical and recent summer hydrographic sections. The near-summer tidal front location is determined on the basis of the magnitude of vertical stratification of the water column as measured by the Simpson parameter. Sea surface and air CO2 partial pressures based on data from eleven transects collected in summer and fall from 2000 to 2004 are used to estimate CO2 fluxes over the shelf. The near-shore waters are a source of CO2 to the atmosphere while the midshelf region is a CO2 sink. The transition between source and sink regions closely follows the location of tidal fronts, suggesting a link between vertical stratification of the water column and the regional CO2 balance. The highest surface values of Chl a are associated with the strongest CO2 sinks. The colocation of lowest CO2 partial pressure (pCO2) and highest Chl a suggests that phytoplankton blooms on the stratified side of the fronts draw the ocean's CO2 to very low levels. The mean shelf sea-air difference in pCO2 (ΔpCO2) is −24 μatm and rises to −29 μatm if the shelf break front is included. Peaks in ΔpCO2 of −110 μatm, among the highest observed in the global ocean, are observed. The estimated summer mean CO2 flux over the shelf is −4.4 mmol m−2 d−1 and rises to −5.7 mmol m−2 d−1 when the shelf break area is taken into account. Thus, during the warm season the shelf off Patagonia is a significant atmospheric CO2 sink.
    Description: Published
    Repository Name: AquaDocs
    Type: Journal Contribution , Refereed
    Format: pp.1-10
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2021-05-19
    Description: Sea-air differences of CO2partial pressures (DpCO2) and surface chlorophyll a (chl-a)concentration have been determined during 22 cruises in various seasons for 2000–2006over the Patagonia Sea and shelf break. From spring to autumn, the nearshore waters act as asource of atmospheric CO2, while the midshelf and slope are a CO2sink, leading to highlynegative areal means of sea-air CO2flux and DpCO2. The DpCO2and CO2flux in springreach values of 67 matm and 7  103mol m2d1, respectively, and are close toequilibrium in winter. Sea-air DpCO2and chl-a over the shelf are negatively correlated,suggesting that photosynthesis is one of the main processes responsible for the largeCO2sequestration. The annual areal mean DpCO2and sea-air CO2flux are 31 matmand 3.7  103mol m2d1, respectively, indicating that the Patagonia Sea is one ofthe strongest CO2sinks per unit area in the World Ocean.
    Description: Published
    Repository Name: AquaDocs
    Type: Journal Contribution , Refereed
    Format: pp.1-11
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...