GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    Berlin, Heidelberg :Springer Berlin / Heidelberg,
    Keywords: Freshwater ecology. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (529 pages)
    Edition: 1st ed.
    ISBN: 9783540268949
    DDC: 577.6
    Language: English
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Keywords: Ecology--Simulation methods. ; Ecosystem management--Simulation methods. ; Environmental sciences--Simulation methods. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (381 pages)
    Edition: 1st ed.
    ISBN: 9780444635433
    Series Statement: Issn Series ; v.Volume 27
    DDC: 577.0113
    Language: English
    Note: Front Cover -- Advanced Modelling Techniques Studying Global Changes in Environmental Sciences -- Copyright -- Contents -- Contributors -- Preface -- Chapter 1: Introduction: Global changes and sustainable ecosystem management -- 1.1. Effects of Global Changes -- 1.2. Sustainable Ecosystem Management -- 1.3. Outline of This Book -- 1.3.1. Review of ecological models -- 1.3.2. Ecological network analysis and structurally dynamic models -- 1.3.3. Behavioral monitoring and species distribution models -- 1.3.4. Ecological risk assessment -- 1.3.5. Agriculture and forest ecosystems -- 1.3.6. Urban ecosystems -- 1.3.7. Estuary and marine ecosystems -- References -- Chapter 2: Toward a new generation of ecological modelling techniques: Review and bibliometrics -- 2.1. Introduction -- 2.2. Historical Development of Ecological Modelling -- 2.3. Bibliometric Analysis of Modelling Approaches -- 2.3.1. Data Sources and Analysis -- 2.3.2. Publication Output -- 2.3.3. Journal Distribution -- 2.3.4. Country/Territory Distribution and International Collaboration -- 2.3.5. Keyword Analysis -- 2.4. Brief Review of Modelling Techniques -- 2.4.1. Structurally Dynamic Model -- 2.4.2. Individual-Based Models -- 2.4.3. Support Vector Machine -- 2.4.4. Artificial Neural Networks -- 2.4.5. Tree-Based Model -- 2.4.6. Evolutionary Computation -- 2.4.7. Ordination and Classification Models -- 2.4.8. k-Nearest Neighbors -- 2.5. Future Perspectives of Ecological Modelling -- 2.5.1. Big Data Age: Data-Intensive Modelling -- 2.5.2. Hybrid Models -- 2.5.3. Model Sensitivities and Uncertainties -- References -- Chapter 3: System-wide measures in ecological network analysis -- 3.1. Introduction -- 3.2. Description of system-wide Measures -- 3.3. Ecosystem Models Used for Comparison -- 3.4. Methods -- 3.5. Observations and Discussion -- 3.5.1. Clusters of Structure-Based Measures. , 3.5.2. Clusters of Flow-Based Measures -- 3.5.3. Clusters of Storage-Based Measures -- References -- Chapter 4: Application of structurally dynamic models (SDMs) to determine impacts of climate changes -- 4.1. Introduction -- 4.2. Development of SDM -- 4.2.1. The Number of Feedbacks and Regulations Is Extremely High and Makes It Possible for the Living Organisms and Populatio -- 4.2.2. Ecosystems Show a High Degree of Heterogeneity in Space and in Time -- 4.2.3. Ecosystems and Their Biological Components, the Species, Evolve Steadily and over the Long-Term Toward Higher Complexi -- 4.3. Application of SDMs for the Assessment of Ecological Changes due to Climate Changes -- 4.4. Conclusions -- References -- Chapter 5: Modelling animal behavior to monitor effects of stressors -- 5.1. Introduction -- 5.2. Behavior Modelling: Dealing with Instantaneous or Whole Data Sets -- 5.2.1. Parameter Extraction and State Identification -- 5.2.2. Filtering and Intermittency -- 5.2.3. Statistics and Informatics -- 5.3. Higher Moments in Position Distribution -- 5.4. Identifying Behavioral States -- 5.5. Data Transformation and Filtering by Integration -- 5.6. Intermittency -- 5.7. Discussion and Conclusion -- Acknowledgment -- References -- Chapter 6: Species distribution models for sustainable ecosystem management -- 6.1. Introduction -- 6.2. Model Development Procedure -- 6.3. Selected Models: Characteristics and Examples -- 6.3.1. Decision Trees -- 6.3.1.1. General characteristics -- 6.3.1.2. Examples -- 6.3.1.3. Additional remarks -- 6.3.2. Generalised Linear Models -- 6.3.2.1. General characteristics -- 6.3.2.2. Examples -- 6.3.2.3. Additional remarks -- 6.3.3. Artificial Neural Networks -- 6.3.3.1. General characteristics -- 6.3.3.2. Examples -- 6.3.3.3. Additional remarks -- 6.3.4. Fuzzy Logic -- 6.3.4.1. General characteristics -- 6.3.4.2. Examples. , 6.3.4.3. Additional remarks -- 6.3.5. Bayesian Belief Networks -- 6.3.5.1. General characteristics -- 6.3.5.2. Examples -- 6.3.5.3. Additional remarks -- 6.3.6. Summary of Advantages and Drawbacks -- 6.4. Future Perspectives -- References -- Chapter 7: Ecosystem risk assessment modelling method for emerging pollutants -- 7.1. Review of Ecological Risk Assessment Model Methods -- 7.2. The Selected Model Method -- 7.3. Case Study: Application of AQUATOX Models for Ecosystem Risk Assessment of Polycyclic Aromatic Hydrocarbons in Lake Ecos -- 7.3.1. Application of Models -- 7.3.2. Models -- 7.3.2.1. AQUATOX model -- 7.3.2.2. Parameterization -- 7.3.2.2.1. Biomass and physiological parameters of organisms -- 7.3.2.2.2. Characteristics of Baiyangdian Lake -- 7.3.2.2.3. PAHs model parameters -- 7.3.2.2.4. Determining PAHs water contamination -- 7.3.2.2.5. Sensitivity analysis -- 7.3.3. Results of Model Application -- 7.3.3.1. Model calibration -- 7.3.3.2. Sensitivity analysis -- 7.3.3.3. PAHs risk estimation -- 7.3.4. Discussion on the Model Application -- 7.3.4.1. Compare experiment-derived NOEC with model NOEC for PAHs -- 7.3.4.2. Compare traditional method with model method for ecological risk assessment for PAHs -- 7.4. Perspectives -- Acknowledgments -- References -- Chapter 8: Development of species sensitivity distribution (SSD) models for setting up the management priority with water qua -- 8.1. Introduction -- 8.2. Methods -- 8.2.1. BMC Platform Development for SSD Models -- 8.2.1.1. BMC structure -- 8.2.1.2. BMC functions -- 8.2.1.2.1. Fitting SSD models -- 8.2.1.2.2. Determining the best fitting model based on DIC -- 8.2.1.2.3. Uncertainty analysis -- 8.2.1.2.4. Calculating the eco-risk indicator: PAF and msPAF -- 8.2.2. Framework for Determination of WQC and Screening of PCCs -- 8.2.2.1. WQCs calculation -- 8.2.2.2. PCCs screening. , 8.2.3. Overview of BTB Areas, Occurrence of PTSs, and Ecotoxicity Data Preprocessing -- 8.3. Results and Discussion -- 8.3.1. Evaluation of the BMC Platform -- 8.3.1.1. Selection of the best SSD models -- 8.3.1.2. Priority and posterior distribution of SSDs parameters -- 8.3.1.3. CI for uncertainty analysis -- 8.3.1.4. Validation of SSD models -- 8.3.2. Eco-risks with Uncertainty -- 8.3.2.1. Generic eco-risks for a specific substance -- 8.3.2.2. Joint eco-risk for multiple substances based on response addition -- 8.3.3. Evaluation of Various WQC Strategies -- 8.3.3.1. Abundance of toxicity data -- 8.3.3.2. Limitation of toxicity data -- 8.3.3.3. Lack of toxicity data -- 8.3.3.4. Implication for improvement of the local WQC in BTB -- 8.3.4. Ranking and Screening Using Various PCC Strategies -- 8.3.4.1. PNEC -- 8.3.4.2. Eco-risk calculated by BMC -- 8.3.4.3. EEC/PNEC -- 8.3.4.4. PCC list in BTB area -- 8.3.4.5. Implication for update of the local PCC list in BTB -- 8.4. Conclusion -- Acknowledgments -- References -- Chapter 9: Modelling mixed forest stands: Methodological challenges and approaches -- 9.1. Introduction -- 9.2. Review Methodology -- 9.2.1. Literature Review on Modelling Mixed Forest Stands -- 9.2.2. Ranking of Forest Models -- 9.3. Results and Discussion -- 9.3.1. Patterns of Ecological Model Use in Mixed Forests -- 9.3.2. Model Ranking -- 9.3.2.1. FORMIX -- 9.3.2.2. FORMIND -- 9.3.2.3. SILVA -- 9.3.2.4. FORECAST -- 9.3.3. Comparison of the Top-Ranked Models -- 9.4. Conclusions -- Acknowledgments -- References -- Chapter 10: Decision in agroecosystems advanced modelling techniques studying global changes in environmental sciences -- 10.1. Introduction -- 10.2. Approaches Based on Management Strategy Simulation -- 10.2.1. Simulation of Discrete Events in Agroecosystem Dynamics -- 10.2.2. Simulation of Agroecosystem Control. , 10.3. Design of Agroecosystem Management Strategy -- 10.3.1. Hierarchical Planning -- 10.3.1.1. HTN planning concepts -- 10.3.1.2. Planning approach in HTNs -- 10.3.1.3. Illustration based on the problem of selecting an operating mode in agriculture -- 10.3.2. Planning as Weighted Constraint Satisfaction -- 10.3.2.1. Constraint satisfaction problem -- 10.3.2.2. Networks of weighted constraints -- 10.3.2.3. Illustration based on crop allocation -- 10.3.3. Planning Under Uncertainty with Markov Decision Processes -- 10.3.3.1. Markov decision processes -- 10.3.3.2. Illustration using a forest management problem -- 10.4. Strategy Design by Simulation and Learning -- 10.5. Illustrations -- 10.5.1. SAFIHR: Modelling a Farming Agent -- 10.5.1.1. Decision problem -- 10.5.1.2. SAFIHR: Continuous planning -- 10.5.1.3. Overview of the overall operation -- 10.6. Conclusion -- References -- Chapter 11: Ecosystem services in relation to carbon cycle of Asansol-Durgapur urban system, India -- 11.1. Introduction -- 11.2. Methods -- 11.2.1. Study Area -- 11.2.2. Urban Forest -- 11.2.3. Agriculture -- 11.2.4. Anthropogenic Activities -- 11.2.5. Cattle Production -- 11.3. Analysis and Discussion -- 11.3.1. Ecosystem Services and Disservices of Urban Forest -- 11.3.2. Ecosystem Services and Disservices of Agricultural Field -- 11.3.3. Ecosystem Services and Disservices Through Anthropogenic Activities -- 11.3.4. Ecosystem Services and Disservices Through Cattle Production -- 11.3.5. Impact on Biodiversity -- 11.3.6. Cultural Services and Disservices -- 11.3.7. Future Perspective of Ecosystem Services -- 11.4. Conclusions -- Acknowledgments -- References -- Chapter 12: Modelling the effects of climate change in estuarine ecosystems with coupled hydrodynamic and biogeochemical mode -- 12.1. Introduction -- 12.2. Coupled Hydrodynamic and Biogeochemical Models. , 12.3. Models as Effective Tools to Support Estuarine Climate Change Impacts Assessment.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1365-2427
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: 1. Two types of artificial neural networks procedures were used to define and predict diatom assemblage structures in Luxembourg streams using environmental data.2. Self-organising maps (SOM) were used to classify samples according to their diatom composition, and multilayer perceptron with a backpropagation learning algorithm (BPN) was used to predict these assemblages using environmental characteristics of each sample as input and spatial coordinates (X and Y) of the cell centres of the SOM map identified as diatom assemblages as output. Classical methods (correspondence analysis and clustering analysis) were then used to identify the relations between diatom assemblages and the SOM cell number. A canonical correspondence analysis was also used to define the relationship between these assemblages and the environmental conditions.3. The diatom-SOM training set resulted in 12 representative assemblages (12 clusters) having different species compositions. Comparison of observed and estimated sample positions on the SOM map were used to evaluate the performance of the BPN (correlation coefficients were 0.93 for X and 0.94 for Y). Mean square errors of 12 cells varied from 0.47 to 1.77 and the proportion of well predicted samples ranged from 37.5 to 92.9%. This study showed the high predictability of diatom assemblages using physical and chemical parameters for a small number of river types within a restricted geographical area.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2012-10-16
    Description: A better understanding of the relative importance of different spatial scale determinants on fish communities will eventually increase the accuracy and precision of their bioassessments. Many studies have described the influence of environmental variables on fish communities on multiple spatial scales. However, there is very limited information available on this topic for the East Asian monsoon region, including Korea. In this study, we evaluated the relationship between fish communities and environmental variables at multiple spatial scales using self-organizing map (SOM), random forest, and theoretical path models. The SOM explored differences among fish communities, reflecting environmental gradients, such as a longitudinal gradient from upstream to downstream, and differences in land cover types and water quality. The random forest model for predicting fish community patterns that used all 14 environmental variables was more powerful than a model using any single variable or other combination of environmental variables, and the random forest model was effective at predicting the occurrence of species and evaluating the contribution of environmental variables to that prediction. The theoretical path model described the responses of different species to their environment at multiple spatial scales, showing the importance of altitude, forest, and water quality factors to fish assemblages.
    Print ISSN: 1661-7827
    Electronic ISSN: 1660-4601
    Topics: Energy, Environment Protection, Nuclear Power Engineering , Medicine
    Published by MDPI Publishing
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...