GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    facet.materialart.
    Unknown
    FINNISH SOC FOREST SCIENCEFINNISH FOREST RESEARCH
    In:  EPIC3Silva Fennica, FINNISH SOC FOREST SCIENCEFINNISH FOREST RESEARCH, 51(id 166), ISSN: 0037-5330
    Publication Date: 2022-10-17
    Description: Tree stands in the boreal treeline ecotone are, in addition to climate change, impacted by disturbances such as fire, water-related disturbances and logging. We aim to understand how these disturbances affect growth, age structure, and spatial patterns of larch stands in the north-eastern Siberian treeline ecotone (lower Kolyma River region), an insufficiently researched region. Stand structure of Larix cajanderi Mayr was studied at seven sites impacted by disturbances. Maximum tree age ranged from 44 to 300 years. Young to medium-aged stands had, independent of disturbance type, the highest stand densities with over 4000 larch trees per ha. These sites also had the highest growth rates for tree height and stem diameter. Overall lowest stand densities were found in a polygonal field at the northern end of the study area, with larches growing in distinct “tree islands”. At all sites, saplings are significantly clustered. Differences in fire severity led to contrasting stand structures with respect to tree, recruit, and overall stand densities. While a low severity fire resulted in low-density stands with high proportions of small and young larches, high severity fires resulted in high-density stands with high proportions of big trees. At waterdisturbed sites, stand structure varied between waterlogged and drained sites and latitude. These mixed effects of climate and disturbance make it difficult to predict future stand characteristics and the treeline position.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-08-12
    Description: Arctic and alpine treelines worldwide differ in their reactions to climate change. A northward advance of or densification within the treeline ecotone will likely influence climate-vegetation feedback mechanisms. We present a combined field- and model-based approach to better understand the population processes involved in the responses of the whole treeline ecotone, spanning from northern taiga to single-tree tundra, to climate warming. Using information on stand structure, tree age, and seed quality and quantity from seven sites, we investigate effects of intra-specific competition and seed availability on the specific impact of recent climate warming on larch stands. Field data show that tree density is highest in the forest-tundra, and average tree size decreases from northern taiga to single-tree tundra. Age-structure analyses indicate that the trees in the northern taiga and forest-tundra have been present for at least ~240 years. At all sites except the most southerly ones, past establishment is positively correlated with regional temperature increase. In the single-tree tundra however, a change in growth form from krummholz to erect trees, beginning ~130 years ago, rather than establishment date has been recorded. Seed mass decreases from south to north, while seed quantity increases. Simulations with LAVESI (Larix Vegetation Simulator) further suggest that relative density changes strongly in response to a warming signal in the forest-tundra while intra-specific competition limits densification in the northern taiga and seed limitation hinders densification in the single-tree tundra. We find striking differences in strength and timing of responses to recent climate warming. While forest-tundra stands recently densified, recruitment is almost non-existent at the southern and northern end of the ecotone due to autecological processes. Palaeo-treelines may therefore be inappropriate to infer past temperature changes at a fine scale. Moreover, a lagged treeline response to past warming will, via feedback mechanisms, influence climate change in the future.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , NonPeerReviewed
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-08-12
    Description: Arctic and alpine treelines worldwide differ in their reactions to climate change. A northward advance of or densification within the treeline ecotone will likely influence climate-vegetation feedback mechanisms. In our study, which was conducted in the Taimyr Depression in the North Siberian Lowlands, w present a combined field- and model-based approach helping us to better understand the population processes involved in the responses of the whole treeline ecotone, spanning from closed forest to single-tree tundra, to climate warming. Using information on stand structure, tree age, and seed quality and quantity from seven sites, we investigate effects of intra-specific competition and seed availability on the specific impact of recent climate warming on larch stands. Field data show that tree density is highest in the forest-tundra, and average tree size decreases from closed forest to single-tree tundra. Age-structure analyses indicate that the trees in the closed forest and forest-tundra have been present for at least ~240 years. At all sites except the most southerly ones, past establishment is positively correlated with regional temperature increase. In the single-tree tundra however, a change in growth form from krummholz to erect trees, beginning ~130 years ago, rather than establishment date has been recorded. Seed mass decreases from south to north, while seed quantity increases. Simulations with LAVESI (Larix Vegetation Simulator) further suggest that relative density changes strongly in response to a warming signal in the forest-tundra while intra-specific competition limits densification in the closed forest and seed limitation hinders densification in the single-tree tundra. We find striking differences in strength and timing of responses to recent climate warming. While forest-tundra stands recently densified, recruitment is almost non-existent at the southern and northern end of the ecotone due to autecological processes. Palaeo-treelines may therefore be inappropriate to infer past temperature changes at a fine scale. Moreover, a lagged treeline response to past warming will, via feedback mechanisms, influence climate change in the future.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , NonPeerReviewed
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Wieczorek, Mareike; Kruse, Stefan; Epp, Laura Saskia; Kolmogorov, Alexei; Nikolaev, Anatoly N; Heinrich, Ingo; Jeltsch, Florian; Pestryakova, Luidmila A; Zibulski, Romy; Herzschuh, Ulrike (2017): Dissimilar responses of larch stands in northern Siberia to increasing temperatures-a field and simulation based study. Ecology, 98(9), 2343-2355, https://doi.org/10.1002/ecy.1887
    Publication Date: 2023-11-18
    Description: Arctic and alpine treelines worldwide differ in their reactions to climate change. A northward advance of or densification within the treeline ecotone will likely influence climate-vegetation feedback mechanisms. In our study, which was conducted in the Taimyr Depression in the North Siberian Lowlands, w present a combined field- and model-based approach helping us to better understand the population processes involved in the responses of the whole treeline ecotone, spanning from closed forest to single-tree tundra, to climate warming. Using information on stand structure, tree age, and seed quality and quantity from seven sites, we investigate effects of intra-specific competition and seed availability on the specific impact of recent climate warming on larch stands. Field data show that tree density is highest in the forest-tundra, and average tree size decreases from closed forest to single-tree tundra. Age-structure analyses indicate that the trees in the closed forest and forest-tundra have been present for at least ~240 years. At all sites except the most southerly ones, past establishment is positively correlated with regional temperature increase. In the single-tree tundra however, a change in growth form from krummholz to erect trees, beginning ~130 years ago, rather than establishment date has been recorded. Seed mass decreases from south to north, while seed quantity increases. Simulations with LAVESI (Larix Vegetation Simulator) further suggest that relative density changes strongly in response to a warming signal in the forest-tundra while intra-specific competition limits densification in the closed forest and seed limitation hinders densification in the single-tree tundra. We find striking differences in strength and timing of responses to recent climate warming. While forest-tundra stands recently densified, recruitment is almost non-existent at the southern and northern end of the ecotone due to autecological processes. Palaeo-treelines may therefore be inappropriate to infer past temperature changes at a fine scale. Moreover, a lagged treeline response to past warming will, via feedback mechanisms, influence climate change in the future.
    Keywords: AWI_Envi; AWI_PerDyn; Permafrost Research (Periglacial Dynamics) @ AWI; Polar Terrestrial Environmental Systems @ AWI
    Type: Dataset
    Format: application/zip, 4 datasets
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2023-11-18
    Keywords: Area; AWI_Envi; AWI_PerDyn; CF; CH02II; CH02III; CH06; CH06I; CH06III; CH06IV; CH06LP02; CH12I; CH12II; CH17I; CH17II; Class; Diameter; Elevation of event; Event label; FTa; FTb; FTc; FTd; FTe; Group; Group size; Height; Krummholz; Latitude of event; Layer description; Longitude of event; Name; Optional event label; Permafrost Research (Periglacial Dynamics) @ AWI; Polar Terrestrial Environmental Systems @ AWI; Sampling date; STT; Tree crown diameter; TY04VI; TY04VII; TY07VI; TY07VII; TY09VI; TY09VII; Vitality; Year of establishment
    Type: Dataset
    Format: text/tab-separated-values, 20722 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2023-11-18
    Keywords: AWI_Envi; AWI_PerDyn; CF; CH06III; CH12I; CH12II; CH17I; CH17II; Cones; Event label; FTd; Latitude of event; Longitude of event; Name; Optional event label; Permafrost Research (Periglacial Dynamics) @ AWI; Polar Terrestrial Environmental Systems @ AWI; Seeds; STT
    Type: Dataset
    Format: text/tab-separated-values, 183 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2023-11-18
    Keywords: AWI_Envi; AWI_PerDyn; Permafrost Research (Periglacial Dynamics) @ AWI; Polar Terrestrial Environmental Systems @ AWI
    Type: Dataset
    Format: application/zip, 1.2 kBytes
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2023-11-18
    Keywords: AWI_Envi; AWI_PerDyn; CF; CH06; CH12; CH17; Event label; FTd; Latitude of event; Longitude of event; Optional event label; Permafrost Research (Periglacial Dynamics) @ AWI; Polar Terrestrial Environmental Systems @ AWI; Quality code; Sample, dry mass; Sample amount; STT
    Type: Dataset
    Format: text/tab-separated-values, 18 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...