GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2020-03-08
    Description: The aim of this study was to compare the climatic responses of three tree rings proxies: tree ring width (TRW), maximum latewood density (MXD), and blue intensity (BI). For this study, 20 cores of Pinus sylvestris covering the period 1886–2015 were extracted from living non-damaged trees from the Eastern Carpathian Mountains (Romania). Each chronology was compared to monthly and daily climate data. All tree ring proxies had a stronger correlation with the daily climate data compared to monthly data. The highest correlation coefficient was obtained between the MXD chronology and daily maximum temperature over the period beginning with the end of July and ending in the middle of September (r = 0.64). The optimal intervals for the temperature signature were 01 Aug – 24 Sept for the MXD chronology, 05 Aug – 25 Aug for the BI chronology, and both 16 Nov of the previous year – 16 March of the current year and 15 Apr – 05 May for the TRW chronology. The results from our study indicate that MXD can be used as a proxy indicator for summer maximum temperature, while TRW can be used as a proxy indicator for just March maximum temperature. The weak and unstable relationship between BI and maximum temperature indicates that BI is not a good proxy indicator for climate reconstructions over the analysed region.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-11-19
    Description: We present the first annual oxygen isotope record (1900–2016) from the latewood (LW) cellulose of oak trees (Quercus robur) from NW Romania. As expected, the results correlate negatively with summer relative humidity, sunshine duration and precipitation and positively with summer maximum temperature. Spatial correlation analysis reveals a clear signal reflecting drought conditions at a European scale. Interannual variability is influenced by large-scale atmospheric circulation and by surface temperatures in the North Atlantic Ocean and the Mediterranean Sea. There is considerable potential to produce long and well-replicated oak tree ring stable isotope chronologies in Romania which would allow reconstructions of both regional drought and large-scale circulation variability over southern and central Europe.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-10-28
    Description: Abstract We analyze annually resolved tree-ring stable carbon (δ13C) and oxygen (δ18O) isotopic chronologies from Swiss stone pine (Pinus cembra L.) in Romania. The chronologies cover the period between 1876 and 2012 and integrate data from four individual trees from the Calimani Mts in the eastern Carpathians where climatic records are scarce and starts only from 1961. Calibration trials show that the δ13C values correlate with local April-May relative humidity and with regional to larger scale (European) summer precipitation. δ18O correlates significantly with local relative humidity, cloud cover, maximum temperature, as well as European scale drought conditions. In all cases, the climate effects on δ13C values are weaker than those recorded in the δ18O data, with the latter revealing a tendency towards higher (lower) values of δ18O during extremely dry (wet) years. The most striking signal, however, is the strong link between the interannual δ18O variability recorded in the Calimani Mts and large-scale circulation patterns associated with North Atlantic and Mediteraneean Sea sea surface temperatures. High (low) values of δ18O occur in association with a high (low) pressure system over the central and eastern part of Europe and with a significantly warmer (colder) Mediterranean Sea surface temperature. These results demonstrate the possibility of using tree ring oxygen isotopes from the eastern Carpathians to reconstruct regional drought conditions in eastern Europe on long-term time scales and larger scale circulation dynamics over the pre-instrumental periods.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    MDPI
    In:  EPIC3Water, MDPI, 13(8), pp. 1122, ISSN: 2073-4441
    Publication Date: 2021-07-01
    Description: The role of the large-scale atmospheric circulation in producing heavy rainfall events and floods in the eastern part of Europe, with a special focus on the Siret and Prut catchment areas (Romania), is analyzed in this study. Moreover, a detailed analysis of the socio-economic impacts of the most extreme flood events (e.g., July 2008, June–July 2010, and June 2020) is given. Analysis of the largest flood events indicates that the flood peaks have been preceded up to 6 days in advance by intrusions of high Potential Vorticity (PV) anomalies toward the southeastern part of Europe, persistent cut-off lows over the analyzed region, and increased water vapor transport over the catchment areas of Siret and Prut Rivers. The vertically integrated water vapor transport prior to the flood peak exceeds 300 kg m-1 s-1, leading to heavy rainfall events. We also show that the implementation of the Flood Management Plan in Romania had positive results during the 2020 flood event compared with the other flood events, when the authorities took several precaution measurements that mitigated in a better way the socio-economic impact and risks of the flood event. The results presented in this study offer new insights regarding the importance of large-scale atmospheric circulation and water vapor transport as drivers of extreme flooding in the eastern part of Europe and could lead to a better flood forecast and flood risk management.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    COPERNICUS GESELLSCHAFT MBH
    In:  EPIC3Natural Hazards and Earth System Sciences, COPERNICUS GESELLSCHAFT MBH, 21(5), pp. 1685-1701, ISSN: 1561-8633
    Publication Date: 2021-07-01
    Description: In this study we analyze drought features at the European level over the period 1901–2019 using three drought indices: the standardized precipitation index (SPI), the standardized precipitation evapotranspiration index (SPEI), and the self-calibrated Palmer drought severity index (scPDSI). The results based on the SPEI and scPDSI point to the fact that Central Europe (CEU) and the Mediterranean region (MED) are becoming dryer due to an increase in the potential evapotranspiration and mean air temperature, while North Europe (NEU) is becoming wetter. By contrast, the SPI drought does not reveal these changes in the drought variability, mainly due to the fact that the precipitation does not exhibit a significant change, especially over CEU. The SPEI12 indicates a significant increase both in the drought frequency and area over the last three decades for MED and CEU, while SPI12 does not capture these features. Thus, the performance of the SPI may be insufficient for drought analysis studies over regions where there is a strong warming signal. By analyzing the frequency of compound events (e.g., high temperatures and droughts), we show that the potential evapotranspiration and the mean air temperature are becoming essential components for drought occurrence over CEU and MED. This, together with the projected increase in the potential evapotranspiration under a warming climate, has significant implications concerning the future occurrence of drought events, especially for the MED and CEU regions.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2020-08-10
    Description: This paper aims to develop the first differentiated (earlywood—EW, latewood—LW, and total ring width—RW) dendrochronological series for ash (Fraxinus excelsior L.) and oak (Quercus robur L.) trees from the Republic of Moldova, and to analyze their climatic response and their spatio-temporal stability. For this, 18 ash and 26 oak trees were cored from the DobruÈ�a protected area, Republic of Moldova, Eastern Europe, and new EW, LW, and RW chronologies were developed for ash and oak covering the last century. The obtained results showed that the RW and LW have a similar climatic response for both species, while EW is capturing interannual climate variations and has a different reaction. The analyses performed with monthly climatic data revealed a significant and negative correlation with the mean air temperature and a significant and positive correlation with precipitation and the Standardized Precipitation-Evapotranspiration Index (SPEI) for both ash and oak. The temperature during the vegetation period has a strong influence on all tree-ring components of ash, while for oak the strong correlation was found only for LW. The positive and significant correlation between LW and RW with precipitation for both species, suggests that ash and oak are sensitive to the hydrological component and the precipitation is the main tree growth-limiting factor. Despite the significant correlation with precipitation and temperature for the whole analyzed period, the 25-year moving correlation analyses show that they are not stable in time and can switch from positive to negative or vice versa, while the correlation with SPEI3 drought index, which is a integration of both climatic parameters, is stable in time. By employing the stability map analysis, we show that oak and ash tree ring components, from the eastern part of the Republic of Moldova, have a stable and significant correlation with SPEI3 and scPDSI drought indices from February (January) until September, over the eastern part of Europe.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    Nature Research
    In:  EPIC3Communications Earth & Environment, Nature Research, 2(1), pp. 61, ISSN: 2662-4435
    Publication Date: 2021-07-01
    Description: Megadroughts are notable manifestations of the American Southwest, but not so much of the European climate. By using long-term hydrological and meteorological observations, as well as paleoclimate reconstructions, here we show that central Europe has experienced much longer and severe droughts during the Spörer Minimum (~AD 1400–1480) and Dalton Minimum (~AD 1770–1840), than the ones observed during the 21st century. These two megadroughts appear to be linked with a cold state of the North Atlantic Ocean and enhanced winter atmospheric blocking activity over the British Isles and western part of Europe, concurrent with reduced solar forcing and explosive volcanism. Moreover, we show that the recent drought events (e.g., 2003, 2015, and 2018), are within the range of natural variability and they are not unprecedented over the last millennium.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , peerRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    Frontiers Media
    In:  EPIC3Frontiers in Climate, Frontiers Media, 3, pp. 58, ISSN: 2624-9553
    Publication Date: 2021-07-01
    Description: An important aspect of inevitable surprises, for the climate system, is the potential of occurrence of compound extreme events. These can be events that occur at the same time over the same geographic location or at multiple locations within a given country or around the world. In this study, we investigate the spatio-temporal variability of summer compound hot and dry (CHD) events at European level and we quantify the relationship between the occurrence of CHDs and the large-scale atmospheric circulation. Here we show that summer 1955 stands out as the year with the largest spatial extent characterized by hot and dry conditions (~21.2 at European level), followed by 2015 (~20.3), 1959 (~19.4), and 1950 (~16.9). By employing an Empirical Orthogonal Function (EOF) analysis we show that there are three preferred centers of action of CHDs over Europe: Fennoscandia, the central part of Europe, and the south-eastern part of Europe. Overall, hot and dry summers are, in general, associated with persistent high-pressure systems over the regions affected by CHDs, which in turn reduces the zonal flow and diverts the storm tracks southward. The high-pressure systems associated with each mode of variability largely suppresses ascending motions, reduces water vapor condensation and precipitation formation, leading to drought conditions below this atmospheric system. This study may help improve our understanding of the spatio-temporal variability of hot and dry summers, at European level, as well as their driving mechanisms.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , peerRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    facet.materialart.
    Unknown
    NATURE PUBLISHING GROUP
    In:  EPIC3Scientific Reports, NATURE PUBLISHING GROUP, 10(1), ISSN: 2045-2322
    Publication Date: 2020-08-10
    Description: Over the past decades, Europe has been affected by several low flow periods which had substantial impacts on the hydrology of the rivers themselves as well as on the society and economy. Low flow periods have a direct impact on the environment, on the inland waterway navigation, on the hydropower production as well as on the sediment management, among others. Similar to floods, low flows are naturally occurring phenomena which can significantly hinder different uses and functions of the rivers and impact the aquatic system and the water quality. Moreover, it is projected that, in the future, climate change might lead to drier summers over the European region and therefore to more frequent and severe low flow periods. The results presented here show that the summer 2018 low flow situation, over the Rhine and Elbe Rivers basin, could have been predicted up to two seasons ahead by using previous months' sea surface temperature, sea level pressure, precipitation, mean air temperature and soil moisture. The lagged relationship between the predictand (e.g. seasonal streamflow) and the climate and oceanic predictors varies between 1 month (e.g. precipitation) up to 6 months (e.g. sea surface temperature). Taking into account that all predictors are available in real-time, the forecast scheme can be used to provide early warnings for the upcoming low flow situations, thus offering the possibility for better management of the water resources.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    facet.materialart.
    Unknown
    Springer Nature
    In:  EPIC3npj Climate and Atmospheric Science, Springer Nature, 3(1), pp. 49, ISSN: 2397-3722
    Publication Date: 2021-01-04
    Description: Central Europe has experienced a severe drought almost every April for the last 14 years consecutively, driven by record high temperatures, low flows, high evapotranspiration, and high soil moisture deficit. The dynamic of this recent and recurrent mid-spring dryness is not yet understood. Here we show that the period 2007â€``2020 was characterized by a reduction of ~50% of the usual April rainfall amount over large areas in central Europe. The precipitation deficit and the record high temperatures were triggered by a multiyear recurrent high-pressure system centered over the North Sea and northern Germany and a decline in the temperature gradient between the Arctic region and the mid-latitudes, which diverted the Atlantic storm tracks northward. From a long-term perspective, the precipitation, temperature, and soil moisture anomalies observed over the last 14 years have reached the highest amplitudes over the observational record. Our study provides an in-depth analysis of the hydroclimate extremes in central Europe over the last 140 years and their atmospheric drivers, enabling us to increase our dynamical understating of long-term dry periods, which is vital to enhance forecasting and mitigation of such events.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...