GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2022-10-26
    Description: © The Author(s), 2019. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Domingues, R., Kuwano-Yoshida, A., Chardon-Maldonado, P., Todd, R. E., Halliwell, G., Kim, H., Lin, I., Sato, K., Narazaki, T., Shay, L. K., Miles, T., Glenn, S., Zhang, J. A., Jayne, S. R., Centurioni, L., Le Henaff, M., Foltz, G. R., Bringas, F., Ali, M. M., DiMarco, S. F., Hosoda, S., Fukuoka, T., LaCour, B., Mehra, A., Sanabia, E. R., Gyakum, J. R., Dong, J., Knaff, J. A., & Goni, G. Ocean observations in support of studies and forecasts of tropical and extratropical cyclones. Frontiers in Marine Science, 6, (2019): 446, doi:10.3389/fmars.2019.00446.
    Description: Over the past decade, measurements from the climate-oriented ocean observing system have been key to advancing the understanding of extreme weather events that originate and intensify over the ocean, such as tropical cyclones (TCs) and extratropical bomb cyclones (ECs). In order to foster further advancements to predict and better understand these extreme weather events, a need for a dedicated observing system component specifically to support studies and forecasts of TCs and ECs has been identified, but such a system has not yet been implemented. New technologies, pilot networks, targeted deployments of instruments, and state-of-the art coupled numerical models have enabled advances in research and forecast capabilities and illustrate a potential framework for future development. Here, applications and key results made possible by the different ocean observing efforts in support of studies and forecasts of TCs and ECs, as well as recent advances in observing technologies and strategies are reviewed. Then a vision and specific recommendations for the next decade are discussed.
    Description: This study was supported by the National Oceanic and Atmospheric Administration and JSPS KAKENHI (Grant Numbers: JP17K19093, JP16K12591, and JP16H01846).
    Keywords: Tropical cyclones ; Extratropical bomb cyclones ; Upper-ocean temperature ; Ocean heat content ; Global ocean observing system ; Weather extremes ; Natural hazards ; Coupled ocean-atmosphere forecasts
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-10-26
    Description: © The Author(s), 2019. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Testor, P., de Young, B., Rudnick, D. L., Glenn, S., Hayes, D., Lee, C. M., Pattiaratchi, C., Hill, K., Heslop, E., Turpin, V., Alenius, P., Barrera, C., Barth, J. A., Beaird, N., Becu, G., Bosse, A., Bourrin, F., Brearley, J. A., Chao, Y., Chen, S., Chiggiato, J., Coppola, L., Crout, R., Cummings, J., Curry, B., Curry, R., Davis, R., Desai, K., DiMarco, S., Edwards, C., Fielding, S., Fer, I., Frajka-Williams, E., Gildor, H., Goni, G., Gutierrez, D., Haugan, P., Hebert, D., Heiderich, J., Henson, S., Heywood, K., Hogan, P., Houpert, L., Huh, S., Inall, M. E., Ishii, M., Ito, S., Itoh, S., Jan, S., Kaiser, J., Karstensen, J., Kirkpatrick, B., Klymak, J., Kohut, J., Krahmann, G., Krug, M., McClatchie, S., Marin, F., Mauri, E., Mehra, A., Meredith, M. P., Meunier, T., Miles, T., Morell, J. M., Mortier, L., Nicholson, S., O'Callaghan, J., O'Conchubhair, D., Oke, P., Pallas-Sanz, E., Palmer, M., Park, J., Perivoliotis, L., Poulain, P., Perry, R., Queste, B., Rainville, L., Rehm, E., Roughan, M., Rome, N., Ross, T., Ruiz, S., Saba, G., Schaeffer, A., Schonau, M., Schroeder, K., Shimizu, Y., Sloyan, B. M., Smeed, D., Snowden, D., Song, Y., Swart, S., Tenreiro, M., Thompson, A., Tintore, J., Todd, R. E., Toro, C., Venables, H., Wagawa, T., Waterman, S., Watlington, R. A., & Wilson, D. OceanGliders: A component of the integrated GOOS. Frontiers in Marine Science, 6, (2019): 422, doi:10.3389/fmars.2019.00422.
    Description: The OceanGliders program started in 2016 to support active coordination and enhancement of global glider activity. OceanGliders contributes to the international efforts of the Global Ocean Observation System (GOOS) for Climate, Ocean Health, and Operational Services. It brings together marine scientists and engineers operating gliders around the world: (1) to observe the long-term physical, biogeochemical, and biological ocean processes and phenomena that are relevant for societal applications; and, (2) to contribute to the GOOS through real-time and delayed mode data dissemination. The OceanGliders program is distributed across national and regional observing systems and significantly contributes to integrated, multi-scale and multi-platform sampling strategies. OceanGliders shares best practices, requirements, and scientific knowledge needed for glider operations, data collection and analysis. It also monitors global glider activity and supports the dissemination of glider data through regional and global databases, in real-time and delayed modes, facilitating data access to the wider community. OceanGliders currently supports national, regional and global initiatives to maintain and expand the capabilities and application of gliders to meet key global challenges such as improved measurement of ocean boundary currents, water transformation and storm forecast.
    Description: The editorial team would like to recognize the support of the global glider community to this paper. Our requests for data and information were met with enthusiasm and welcome contributions from around the globe, clearly demonstrating to us a point made in this paper that there are many active and dedicated teams of glider operators and users. We should also acknowledge the support that OceanGliders has received from the WMO/IOC JCOMM-OCG and JCOMMOPS that have allowed this program to develop, encouraging us to articulate a vision for the role of gliders in the GOOS. We acknowledge support from the EU Horizon 2020 AtlantOS project funded under grant agreement No. 633211 and gratefully acknowledge the many agencies and programs that have supported underwater gliders: AlterEco, ANR, CFI, CIGOM, CLASS Ellet Array, CNES, CNRS/INSU, CONACyT, CSIRO, DEFRA, DFG/SFB-754, DFO, DGA, DSTL, ERC, FCO, FP7, and H2020 Europen Commission, HIMIOFoTS, Ifremer, IMOS, IMS, IOOS, IPEV, IRD, Israel MOST, JSPS, MEOPAR, NASA, NAVOCEANO (Navy), NERC, NFR, NJDEP, NOAA, NRC, NRL, NSF, NSERC, ONR, OSNAP, Taiwan MOST, SANAP-NRF, SENER, SIMS, Shell Exploration and Production Company, Sorbonne Université, SSB, UKRI, UNSW, Vettleson, Wallenberg Academy Fellowship, and WWF.
    Keywords: In situ ocean observing systems ; Gliders ; Boundary currents ; Storms ; Water transformation ; Ocean data management ; Autonomous oceanic platforms ; GOOS
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-05-26
    Description: Author Posting. © The Oceanography Society, 2017. This article is posted here by permission of The Oceanography Society for personal use, not for redistribution. The definitive version was published in Oceanography 30, no. 2 (2017): 92–103, doi:10.5670/oceanog.2017.227.
    Description: The tropical Atlantic basin is one of seven global regions where tropical cyclones (TCs) commonly originate, intensify, and affect highly populated coastal areas. Under appropriate atmospheric conditions, TC intensification can be linked to upper-ocean properties. Errors in Atlantic TC intensification forecasts have not been significantly reduced during the last 25 years. The combined use of in situ and satellite observations, particularly of temperature and salinity ahead of TCs, has the potential to improve the representation of the ocean, more accurately initialize hurricane intensity forecast models, and identify areas where TCs may intensify. However, a sustained in situ ocean observing system in the tropical North Atlantic Ocean and Caribbean Sea dedicated to measuring subsurface temperature, salinity, and density fields in support of TC intensity studies and forecasts has yet to be designed and implemented. Autonomous and Lagrangian platforms and sensors offer cost-effective opportunities to accomplish this objective. Here, we highlight recent efforts to use autonomous platforms and sensors, including surface drifters, profiling floats, underwater gliders, and dropsondes, to better understand air-sea processes during high-wind events, particularly those geared toward improving hurricane intensity forecasts. Real-time data availability is key for assimilation into numerical weather forecast models.
    Description: The NOAA/AOML component of this work was originally funded by the Disaster Relief Appropriations Act of 2013, also known as the Sandy Supplemental, and is currently funded through NOAA research grant NA14OAR4830103 by AOML and CARICOOS, as well as NOAA’s Integrated Ocean Observing System (IOOS). The TEMPESTS component of this work is supported by NOAA through the Cooperative Institute for the North Atlantic Region (NA13OAR4830233) with additional analysis support from the WHOI Summer Student Fellowship Program, Nortek Student Equipment Grant, and the Rutgers University Teledyne Webb Graduate Student Fellowship Program. The drifter component of this work is funded through NOAA grant NA15OAR4320071(11.432) in support of the Global Drifter Program.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-01-31
    Description: The OceanGliders program started in 2016 to support active coordination and enhancement of global glider activity. OceanGliders contributes to the international efforts of the Global Ocean Observation System (GOOS) for Climate, Ocean Health, and Operational Services. It brings together marine scientists and engineers operating gliders around the world: (1) to observe the long-term physical, biogeochemical, and biological ocean processes and phenomena that are relevant for societal applications; and, (2) to contribute to the GOOS through real-time and delayed mode data dissemination. The OceanGliders program is distributed across national and regional observing systems and significantly contributes to integrated, multi-scale and multi-platform sampling strategies. OceanGliders shares best practices, requirements, and scientific knowledge needed for glider operations, data collection and analysis. It also monitors global glider activity and supports the dissemination of glider data through regional and global databases, in real-time and delayed modes, facilitating data access to the wider community. OceanGliders currently supports national, regional and global initiatives to maintain and expand the capabilities and application of gliders to meet key global challenges such as improved measurement of ocean boundary currents, water transformation and storm forecast.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...