GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    Biochemistry 33 (1994), S. 1143-1148 
    ISSN: 1520-4995
    Source: ACS Legacy Archives
    Topics: Biology , Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1573-4943
    Keywords: Chaperonins ; rhodanese ; folding ; chemical modification
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology
    Notes: Abstract Differential chemical modification ofE. coli chaperonin 60 (cpn60) was achieved by using one of several sulfhydryl-directed reagents. For native cpn60, the three cysteines were accessible for reaction with N-ethylmaleimide (NEM), while only two of them are accessible to the larger reagent 4,4′-dipyridyl disulfide (4-PDS). However, no sulfhydryl groups were modified when the even larger reagents 5,5′-dithiobis-(2-nitrobenzoic acid) (DTNB) or 2-(4′-(iodoacetamido)anilino) naphthalene-6-sulfonic acid (IAANS), were employed, unless the chaperonin was unfolded. The cpn60 that had been covalently modified with NEM or IAANS, was not able to support the chaperonin-assisted refolding of the mitochondrial enzyme rhodanese, which also requires cpn10 and ATP hydrolysis. However, both modified forms of cpn60 were able to form binary complexes with rhodanese, as demonstrated by their ability to arrest the spontaneous refolding of the enzyme. That is, chemical modification with these sulfhydryl-directed reagents produced a species that was not prevented from interaction with partially folded rhodanese, but that was prevented from supporting a subsequent step(s) during the chaperonin-assisted refolding process.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    The protein journal 12 (1993), S. 65-69 
    ISSN: 1573-4943
    Keywords: Phospholipid vesicles ; rhodanese ; folding ; peptides ; leader sequence
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology
    Notes: Abstract Rhodanese (thiosulfate cyanide sulfurtransferase; E.C. 2.8.1.1) is a mitochondrial enzyme that is unprocessed after import. We describein vitro experiments showing that partially folded rhodanese can interact with lipid bilayers. The interaction was monitored by measuring the ability of rhodanese to disrupt small unilamellar vesicles composed of phosphatidylserine and to release 6-carboxyfluorescein that was trapped in the liposomes. Partially folded rhodanese, derived by dilution of urea-unfolded enzyme, efficiently induced liposome leakage. Native rhodanese had no effect on liposome integrity. Liposome disruption progressively decreased as rhodanese was given the opportunity to refold or aggregate before introduction of the liposomes. A synthetic 23 amino acid peptide representing the N-terminal sequence of rhodanese was very efficient at disrupting the liposomes. Shorter peptides chosen from within this sequence (residues 11–23 or residues 1–17) had no effect on liposome disruption. A peptide representing the tether region that connects the domains of the enzyme was also without effect. These results are consistent with the hypothesis that the N-terminal sequence of rhodanese is an uncleaved leader sequence, and can interact with membrane components that are involved in the mitochondrial uptake of this protein.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    The protein journal 13 (1994), S. 15-22 
    ISSN: 1573-4943
    Keywords: Chaperonins ; rhodanese ; folding ; peptide
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology
    Notes: Abstract Thein vitro refolding of the monomeric, mitochondrial enzyme rhodanese (thiosulfate: cyanide sulfurtransferase, EC 2.8.1.1), which is assisted by theE. coli chaperonins, is modulated by the 23 amino acid peptide (VHQVLYRALVSTKWLAESVRAGK) corresponding to the amino terminal sequence (1–23) of rhodanese. In the absence of the peptide, a maximum recovery of active enzyme of about 65% is achieved after 90 min of initiation of the chaperonin assisted folding reaction. In contrast, this process is substantially inhibited in the presence of the peptide. The maximum recovery of active enzyme is peptide concentration-dependent. The peptide, however, does not prevent the interaction of rhodanese with the chaperonin 60 (cpn60), which leads to the formation of the cpn60-rhodanese complex. In addition, the peptide does not affect the rate of recovery of active enzyme, although it does affect the extent of recovery. Further, the unassisted refolding of rhodanese is also inhibited by the peptide. Thus, the peptide interferes with the folding of rhodanese in either the chaperonin assisted or the unassisted refolding of the enzyme. A 13 amino acid peptide (STKWLAESVRAGK) corresponding to the amino terminal sequence (11–23) of rhodanese does not show any significant effect on the chaperonin assisted or unassisted refolding of the enzyme. The results suggest that other sequences of rhodanese, in addition to the N-terminus, may be required for the binding of cpn60, in accord with a model in which cpn60 interacts with polypeptides through multiple binding sites.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...