GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Document type
Publisher
Years
  • 1
    Publication Date: 2022-10-20
    Description: © The Author(s), 2019. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Wang, Z. A., Moustahfid, H., Mueller, A., V., Michel, A. P. M., Mowlem, M., Glazer, B. T., Mooney, T. A., Michaels, W., McQuillan, J. S., Robidart, J. C., Churchill, J., Sourisseau, M., Daniel, A., Schaap, A., Monk, S., Friedman, K., & Brehmer, P. Advancing observation of ocean biogeochemistry, biology, and ecosystems with cost-effective in situ sensing technologies. Frontiers in Marine Science, 6, (2019): 519, doi:10.3389/fmars.2019.00519.
    Description: Advancing our understanding of ocean biogeochemistry, biology, and ecosystems relies on the ability to make observations both in the ocean and at the critical boundaries between the ocean and other earth systems at relevant spatial and temporal scales. After decades of advancement in ocean observing technologies, one of the key remaining challenges is how to cost-effectively make measurements at the increased resolution necessary for illuminating complex system processes and rapidly evolving changes. In recent years, biogeochemical in situ sensors have been emerging that are threefold or more lower in cost than established technologies; the cost reduction for many biological in situ sensors has also been significant, although the absolute costs are still relatively high. Cost savings in these advancements has been driven by miniaturization, new methods of packaging, and lower-cost mass-produced components such as electronics and materials. Recently, field projects have demonstrated the potential for science-quality data collection via large-scale deployments using cost-effective sensors and deployment strategies. In the coming decade, it is envisioned that ocean biogeochemistry and biology observations will be revolutionized by continued innovation in sensors with increasingly low price points and the scale-up of deployments of these in situ sensor technologies. The goal of this study is therefore to: (1) provide a review of existing sensor technologies that are already achieving cost-effectiveness compared with traditional instrumentation, (2) present case studies of cost-effective in situ deployments that can provide insight into methods for bridging observational gaps, (3) identify key challenge areas where progress in cost reduction is lagging, and (4) present a number of potentially transformative directions for future ocean biogeochemical and biological studies using cost-effective technologies and deployment strategies.
    Description: The unpublished work related to iTag and mini-DO sensor was supported by the US National Science Foundation (NSF) (DBI-145559). The US NSF (OCE-1233654), the US National Institute of Standards and Technology (NIST) (60NANB10D024), and the NOAA Sea Grant (2017-R/RCM-51) supported the development of the CHANOS sensor. Part of this work was supported by the European Commission via the STEMM-CCS, AtlantOS, SenseOCEAN, TriAtlas, and Preface projects under the European Union’s Horizon 2020 research and innovation program (Grant Nos. 603521, 654462, 633211, 614141, and 817578), as well as the AWA project (IRD and BMBF; 01DG12073E), and the Blue Belt Initiative (BBI). The work on the LOC nutrients and carbonate sensors was supported by the Autonuts and CarCASS projects, part of the UK Natural Environment Research Council capital program OCEANIDS (NE/P020798/1 and NE/P02081X/1). The work on zooplankton and chlorophyll sensors was co-supported by the ROEC program (Reseau d’Observation en Environnement Côtier 2015–2020) and the European Regional Development Fund (ERDF).
    Keywords: In situ ; Sensor ; OceanObs ; Ocean technology ; EOVs ; Biogeochemistry ; Biology ; Cost effective
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-03-14
    Description: Aquatic microbial communities are central to biogeochemical processes that maintain Earth’s habitability. However, there is a significant paucity of data collected from these species in their natural environment. To address this, a suite of ocean-deployable sampling and sensing instrumentation has been developed to retrieve, archive and analyse water samples and their microbial fraction using state of the art genetic assays. Recent deployments have shed new light onto the role microbes play in essential ocean processes and highlight the risks they may pose to coastal populations. Although current designs are generally too large, complex and expensive for widespread use, a host of emerging bio-analytical technologies have the potential to revolutionise this field and open new possibilities in aquatic microbial metrology.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...