GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2023-06-27
    Description: The dataset compiles reconstructed changes in bottom water temperature and global ice volume from 0 to 17 Ma using δ18O in conjunction with Mg/Ca records of the infaunal benthic foraminifer, O. umbonatus from Ocean Drilling Program (ODP) Site 130-806 (equatorial Pacific; ~2500 m). This dataset covers the middle Miocene to present (17-0 Ma) and has an average temporal resolution of ~0.2 Ma. Application of the new equations to the Site 130-806 record leads to the suggestion that global ice volume was greater than today after the Middle Miocene Climate Transition (~14 Ma). ODP Site 130-806 bottom waters cooled and freshened as the Pacific zonal sea surface temperature gradient increased, and climate cooled through the Pliocene, prior to the Plio‐Pleistocene glaciation of the Northern Hemisphere.
    Keywords: 130-806; AGE; Benthic foraminifera; Bottom water temperature; Calculated (LEAR 2002 Calibration); Calculated (LEAR 2010 Calibration); COMPCORE; Composite Core; Joides Resolution; Leg130; Mg/Ca; North Pacific Ocean; ocean drilling program; ocean temperatures; δ18O, seawater, reconstructed
    Type: Dataset
    Format: text/tab-separated-values, 942 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Lear, Caroline H; Mawbey, Elaine M; Rosenthal, Yair (2010): Cenozoic benthic foraminiferal Mg/Ca and Li/Ca records: Toward unlocking temperatures and saturation states. Paleoceanography, 25(4), PA4215, https://doi.org/10.1029/2009PA001880
    Publication Date: 2024-03-09
    Description: The sensitivities of benthic foraminiferal Mg/Ca and Li/Ca to bottom water temperature and carbonate saturation state have recently been assessed. Here we present a new approach that uses paired Mg/Ca and Li/Ca records to calculate simultaneous changes in temperature and saturation state. Using previously published records, we first use this approach to document a cooling of deep ocean waters associated with the establishment of the Antarctic ice sheet at the Eocene-Oligocene climate transition. We then apply this approach to new records of the Middle Miocene Climate Transition from ODP Site 761 to estimate variations in bottom water temperature and the oxygen isotopic composition of seawater. We estimate that the oxygen isotopic composition of seawater varied by ~1 per mil between the deglacial extreme of the Miocene Climatic Optimum and the glacial maximum following the Middle Miocene Climate Transition, indicating large amplitude variations in ice volume. However, the longer-term change between 15.3 and 12.5 Ma is marked by a ~1°C cooling of deep waters, and an increase in the oxygen isotopic composition of seawater of ~0.6 per mil. We find that bottom water saturation state increased in the lead up to the Middle Miocene Climate Transition and decreased shortly after. This supports decreasing pCO2 as a driver for global cooling and ice sheet expansion, in agreement with existing boron isotope and leaf stomatal index CO2 records but in contrast to the published alkenone CO2 records.
    Keywords: 122-761; AGE; Bottom water temperature; Calculated; Calculated moving averages; Cibicidoides mundulus, δ13C; Cibicidoides mundulus, δ18O; COMPCORE; Composite Core; Grain size, sieving; Inductively coupled plasma - mass spectrometry (ICP-MS); Joides Resolution; Leg122; Mass spectrometer Finnigan MAT 252; Ocean Drilling Program; ODP; Oridorsalis umbonatus, Lithium/Calcium ratio; Oridorsalis umbonatus, Magnesium/Calcium ratio; Size fraction 〉 0.063 mm, sand; South Indian Ridge, South Indian Ocean; Δ carbonate ion content; δ18O
    Type: Dataset
    Format: text/tab-separated-values, 2998 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2024-02-07
    Description: The boron isotopic ratio of 11B/10B (δ11BSRM951) and trace element composition of marine carbonates are key proxies for understanding carbon cycling (pH) and palaeoceanographic change. However, method validation and comparability of results between laboratories requires carbonate reference materials. Here, we report results of an inter‐laboratory comparison study to both assign δ11BSRM951 and trace element compositions to new synthetic marine carbonate reference materials (RMs), NIST RM 8301 (Coral) and NIST RM 8301 (Foram) and to assess the variance of data among laboratories. Non‐certified reference values and expanded 95% uncertainties for δ11BSRM951 in NIST RM 8301 (Coral) (+24.17‰ ± 0.18‰) and NIST RM 8301 (Foram) (+14.51‰ ± 0.17‰) solutions were assigned by consensus approach using inter‐laboratory data. Differences reported among laboratories were considerably smaller than some previous inter‐laboratory comparisons, yet discrepancies could still lead to large differences in calculated seawater pH. Similarly, variability in reported trace element information among laboratories (e.g., Mg/Ca ± 5% RSD) was often greater than within a single laboratory (e.g., Mg/Ca 〈 2%). Such differences potentially alter proxy‐reconstructed seawater temperature by more than 2 °C. These now well‐characterised solutions are useful reference materials to help the palaeoceanographic community build a comprehensive view of past ocean changes.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2020-07-15
    Description: Benthic foraminifera Mg/Ca is a well-established bottom water temperature (BWT) proxy used in paleoclimate studies. The relationship between Mg/Ca and BWT for numerous species has been determined using core-top and culturing studies. However, the scarcity of calcareous microfossils in Antarctic shelf sediments and poorly defined calibrations at low temperatures has limited the use of the foraminiferal Mg/Ca paleothermometer in ice proximal Antarctic sediments. Here we present paired ocean temperature and modern benthic foraminifera Mg/Ca data for three species, Trifarina angulosa, Bulimina aculeata, and Globocassidulina subglobosa, but with a particular focus on Trifarina angulosa. The core-top data from several Antarctic sectors span a BWT range of −1.7 to +1.2 °C and constrain the relationship between Mg/Ca and cold temperatures. We compare our results to published lower-latitude core-top data for species in the same or related genera, and in the case of Trifarina angulosa, produce a regional calibration. The resulting regional equation for Trifarina angulosa is Temperature (°C) = (Mg/Ca −1.14 ± 0.035)/0.069 ± 0.033). Addition of our Trifarina angulosa data to the previously published Uvigerina spp. dataset provides an alternative global calibration, although some data points appear to be offset from this relationship and are discussed. Mg-temperature relationships for Bulimina aculeata and Globocassidulina subglobosa are also combined with previously published data to produce calibration equations of Temperature (°C) = (Mg/Ca-1.04 ± 0.07)/0.099 ± 0.01 and Temperature (°C) = (Mg/Ca-0.99 ± 0.03)/0.087 ± 0.01, respectively. These refined calibrations highlight the potential utility of benthic foraminifera Mg/Ca-paleothermometry for reconstructing past BWT in Antarctic margin settings.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2018-08-10
    Description: The West Antarctic Ice Sheet (WAIS) represents a large potential source of sea level rise. Observations of ice sheet instabilities in the region have increased in recent decades, with a 77% recorded increase in the net loss of glaciers the Amundsen Sea Embayment (ASE) sector of the WAIS since 1973. This has been attributed to increasing basal melting of floating ice shelves caused by warmer Circumpolar Deep Water (CDW) upwelling onto the shelf. Understanding the role of CDW in glacial retreat in the ASE over longer timescales is key to reducing the uncertainty of future sea level predictions. The aim of this research is to reconstruct CDW incursions onto the ASE continental shelf and correlate them to the glacial history of the area since the Last Glacial Maximum. To achieve this, it is crucial to develop a proxy for detecting the presence or absence of CDW. Whilst foraminiferal preservation is rare in this locality due to the corrosive nature of water masses around the Antarctic Peninsula, several cores from the ASE contain specimens including the benthic species Trifarina angulosa, which is a shallow infaunal species therefore ideal for Mg/Ca temperature reconstructions. Here we present a core-top calibration for T. angulosa for temperatures between -1.75°C and +1.5°C from sites situated in the Southern Ocean. We apply this Mg/Ca temperature calibration to down-core archives at several sites, which are well-dated using radiocarbon. The results are presented here along with benthic and planktonic foraminiferal stable isotope data and complementary trace metal data. Keywords: Circumpolar deep water, foraminifera, Mg/Ca
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2022-04-12
    Description: The West Antarctic Ice Sheet (WAIS) is one of the largest potential sources of future sea-level rise, with glaciers draining the WAIS thinning at an accelerating rate over the past 40 years. Due to complexities in calibrating palaeoceanographic proxies for the Southern Ocean, it remains difficult to assess whether similar changes have occurred earlier during the Holocene or whether there is underlying centennial- to millennial-scale forcing in oceanic variability. Archaeal lipid-based proxies, specifically glycerol dialkyl glycerol tetraether (GDGT; e.g. TEX86 and TEXL86), are powerful tools for reconstructing ocean temperature, but these proxies have been shown previously to be difficult to apply to the Southern Ocean. A greater understanding of the parameters that control Southern Ocean GDGT distributions would improve the application of these biomarker proxies and thus help provide a longer-term perspective on ocean forcing of Antarctic ice sheet changes. In this study, we characterised intact polar lipid (IPL)-GDGTs, representing (recently) living archaeal populations in suspended particulate matter (SPM) from the Amundsen Sea and the Scotia Sea. SPM samples from the Amundsen Sea were collected from up to four water column depths representing the surface waters through to Circumpolar Deep Water (CDW), whereas the Scotia Sea samples were collected along a transect encompassing the sub-Antarctic front through to the southern boundary of the Antarctic Circumpolar Current. IPL-GDGTs with low cyclic diversity were detected throughout the water column with high relative abundances of hydroxylated IPL-GDGTs identified in both the Amundsen and Scotia seas. Results from the Scotia Sea show shifts in IPL-GDGT signatures across well-defined fronts of the Southern Ocean. Indicating that the physicochemical parameters of these water masses determine changes in IPL-GDGT distributions. The Amundsen Sea results identified GDGTs with hexose-phosphohexose head groups in the CDW, suggesting active GDGT synthesis at these depths. These results suggest that GDGTs synthesised at CDW depths may be a significant source of GDGTs exported to the sedimentary record and that temperature reconstructions based on TEX86 or TEXL86 proxies may be significantly influenced by the warmer waters of the CDW.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev , info:eu-repo/semantics/article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...