GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2024-01-24
    Description: 〈title xmlns:mml="http://www.w3.org/1998/Math/MathML"〉Abstract〈/title〉〈p xmlns:mml="http://www.w3.org/1998/Math/MathML" xml:lang="en"〉Jet streams are important sources of non‐orographic internal gravity waves and clear air turbulence (CAT). We analyze non‐orographic gravity waves and CAT during a merger of the polar front jet stream (PFJ) with the subtropical jet stream (STJ) above the southern Atlantic. Thereby, we use a novel combination of airborne observations covering the meso‐scale and turbulent scale in combination with high‐resolution deterministic short‐term forecasts. Coherent phase lines of temperature perturbations by gravity waves stretching along a highly sheared tropopause fold are simulated by the ECMWF IFS (integrated forecast system) forecasts. During the merging event, the PFJ reverses its direction from approximately antiparallel to parallel with respect to the STJ, going along with strong wind shear and horizontal deformation. Temperature perturbations in limb‐imaging and lidar observations onboard the research aircraft HALO during the SouthTRAC campaign show remarkable agreement with the IFS data. Ten hours earlier, the IFS data show an “X‐shaped” pattern in the temperature perturbations emanating from the sheared tropopause fold. Tendencies of the IFS wind components show that these gravity waves are excited by spontaneous emission adjusting the strongly divergent flow when the PFJ impinges the STJ. In situ observations of temperature and wind components at 100 Hz confirm upward propagation of the probed portion of the gravity waves. They furthermore reveal embedded episodes of light‐to‐moderate CAT, Kelvin Helmholtz waves, and indications for partial wave reflection. Patches of low Richardson numbers in the IFS data coincide with the CAT observations, suggesting that this event was accessible to turbulence forecasting.〈/p〉
    Description: Plain Language Summary: Gravity waves play an in important role in vertical and horizontal energy transport in the atmosphere and are significant factors in wheather forecasting and climate projections. Among other processes, tropospheric jet streams are known to be sources of gravity waves. They furthermore can be accompanied by tropopause folds (i.e., local tropopause depressions, where stratospheric air can reach deeply into the troposphere) and turbulence, which is relevant for aviation safety. Using a novel combination of airborne observations and data by a state‐of‐the‐art forecasting system, we analyze gravity waves and turbulence during a merger of tropospheric jet streams above the southern Atlantic. The observations show a high degree of agreement with the forecast data from the troposphere to the stratosphere. Ten hours earlier, the forcast data show an “X‐shaped” gravity wave structure that emerges from a highly sheared tropopause fold between the merging jet streams. Fast in situ observations at the flight level provide information on the characteristics of the observed waves and show light‐to‐moderate turbulence, small‐scale waves and indications for partial wave reflection. The observed turbulence events are consistently located in regions where the forecast data suggest potential for turbulence.〈/p〉
    Description: Key Points: 〈list list-type="bullet"〉 〈list-item〉 〈p xml:lang="en"〉Non‐orographic internal gravity waves and clear air turbulence are observed in merging jet streams〈/p〉〈/list-item〉 〈list-item〉 〈p xml:lang="en"〉State‐of‐the art high resolution forecast agrees with novel combination of airborne sensors〈/p〉〈/list-item〉 〈list-item〉 〈p xml:lang="en"〉“X‐shaped” gravity wave feature resulting from merging jet streams at a highly sheared tropopause fold〈/p〉〈/list-item〉 〈/list〉 〈/p〉
    Description: Bundesministerium für Bildung und Forschung http://dx.doi.org/10.13039/501100002347
    Description: Deutsche Forschungsgemeinschaft http://dx.doi.org/10.13039/501100001659
    Description: https://doi.org/10.5445/IR/1000151856
    Description: https://www.ecmwf.int/en/forecasts
    Description: https://www.ready.noaa.gov/
    Keywords: ddc:551.5 ; gravity waves ; jet streams ; clear air turbulence ; remote sensing ; in situ observations ; field campaigns
    Language: English
    Type: doc-type:article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2015-01-15
    Description: The ENVISAT validation programme for the atmospheric instruments MIPAS, SCIAMACHY and GOMOS is based on a number of balloon-borne, aircraft, satellite and ground-based correlative measurements. In particular the activities of validation scientists were coordinated by ESA within the ENVISAT Stratospheric Aircraft and Balloon Campaign or ESABC. As part of a series of similar papers on other species [this issue] and in parallel to the contribution of the individual validation teams, the present paper provides a synthesis of comparisons performed between MIPAS CH4 and N2O profiles produced by the current ESA operational software (Instrument Processing Facility version 4.61 or IPF v4.61, full resolution MIPAS data covering the period 9 July 2002 to 26 March 2004) and correlative measurements obtained from balloon and aircraft experiments as well as from satellite sensors or from ground-based instruments. In the middle stratosphere, no significant bias is observed between MIPAS and correlative measurements, and MIPAS is providing a very consistent and global picture of the distribution of CH4 and N2O in this region. In average, the MIPAS CH4 values show a small positive bias in the lower stratosphere of about 5%. A similar situation is observed for N2O with a positive bias of 4%. In the lower stratosphere/upper troposphere (UT/LS) the individual used MIPAS data version 4.61 still exhibits some unphysical oscillations in individual CH4 and N2O profiles caused by the processing algorithm (with almost no regularization). Taking these problems into account, the MIPAS CH4 and N2O profiles are behaving as expected from the internal error estimation of IPF v4.61 and the estimated errors of the correlative measurements.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
  • 4
    Publication Date: 2019-07-17
    Description: The ENVISAT validation programme for the atmospheric instruments MIPAS, SCIAMACHY and GOMOS is based on a number of balloon-borne, aircraft, satellite and ground-based correlative measurements. In particular the activities of validation scientists were coordinated by ESA within the ENVISAT Stratospheric Aircraft and Balloon Campaign or ESABC. As part of a series of similar papers on other species [this issue] and in parallel to the contribution of the individual validation teams, the present paper provides a synthesis of comparisons performed between MIPAS CH4 and N2O profiles produced by the current ESA operational software (Instrument Processing Facility version 4.61 or IPF v4.61, full resolution MIPAS data covering the period 9 July 2002 to 26 March 2004) and correlative measurements obtained from balloon and aircraft experiments as well as from satellite sensors or from ground-based instruments. In the middle stratosphere, no significant bias is observed between MIPAS and correlative measurements, and MIPAS is providing a very consistent and global picture of the distribution of CH4 and N2O in this region. In average, the MIPAS CH4 values show a small positive bias in the lower stratosphere of about 5%. A similar situation is observed for N2O with a positive bias of 4%. In the lower stratosphere/upper troposphere (UT/LS) the individual used MIPAS data version 4.61 still exhibits some unphysical oscillations in individual CH4 and N2O profiles caused by the processing algorithm (with almost no regularization). Taking these problems into account, the MIPAS CH4 and N2O profiles are behaving as expected from the internal error estimation of IPF v4.61 and the estimated errors of the correlative measurements.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...