GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Document type
Keywords
Language
  • 1
    In: Limnology and oceanography, Hoboken, NJ : Wiley, 1956, 0024-3590
    Description / Table of Contents: Calcification of the cosmopolitan coccolithophore species Emiliania huxleyi was investigated in relation to the cell division cycle with the use of batch cultures. With a 12 : 12 h light : dark cycle, the population was synchronised to undergo division as a cohort, simultaneously passing through the G1 (assimilation), S (DNA replication), and G2+M (cell division and mitosis) phases. Cell division was followed with the use of quantitative DNA staining and flow cytometry. Simultaneously, carbon-14 (14C) assimilation in organic and inorganic carbon as well as cell abundance, size, and organic nitrogen content were measured at 2-h intervals. In additional experiments, changes in calcification and cell cycle stages were investigated in nitrogen-, phosphorus-, and light-limited cultures. Calcification occurred only during the G1 cell cycle phase, as seen by the very tight correlation between the percentage of cells in G1 and calcification during the dark period. When growth was limited by nitrogen, cells decreased in size, remained in the G1 phase, and showed a moderate increase in the cell-specific calcite content. Limitation of growth by phosphorus, however, caused a significant increase in cell size and a dramatic increase in cellular calcite. Light limitation, by slowing the growth rate, prolonged the time cells spent in the G1 phase with a corresponding increase in the cellular calcite content. These results help explain the differing responses of coccolithophorid growth to nitrogen, phosphorus, and light limitation.
    Type of Medium: Online Resource
    ISSN: 0024-3590
    Language: English
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Keywords: Hochschulschrift ; Sargassosee ; Coccolithophoridae ; Verkalkung
    Type of Medium: Online Resource
    Pages: 1 Online-Ressource (97 Seiten = 5 MB) , Illustrationen, Graphen
    Edition: Online-Ausgabe 2021
    Language: German
    Note: Zusammenfassung in deutscher und englischer Sprache
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Keywords: Hochschulschrift ; Coccolith ; Verkalkung
    Type of Medium: Online Resource
    Pages: Online-Ressource
    DDC: 500
    Language: English
    Note: Kiel, Univ., Diss., 2009
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Müller, Marius N; Barcelos e Ramos, Joana; Schulz, Kai Georg; Riebesell, Ulf; Kaźmierczak, J; Gallo, F; Mackinder, Luke C M; Li, Y; Nesterenko, P N; Trull, Tom W; Hallegraeff, Gustaaf M (2015): Phytoplankton calcification as an effective mechanism to alleviate cellular calcium poisoning. Biogeosciences, 12(21), 6493-6501, https://doi.org/10.5194/bg-12-6493-2015
    Publication Date: 2023-06-19
    Description: Marine phytoplankton has developed the remarkable ability to tightly regulate the concentration of free calcium ions in the intracellular cytosol at a level of ~ 0.1 µmol /l in the presence of seawater Ca2+ concentrations of 10 mmol/1. The low cytosolic calcium ion concentration is of utmost importance for proper cell signalling function. While the regulatory mechanisms responsible for the tight control of intracellular Ca2+ concentration are not completely understood, phytoplankton taxonomic groups appear to have evolved different strategies, which may affect their ability to cope with changes in seawater Ca2+ concentrations in their environment on geological time scales. For example, the Cretaceous (145 to 66 Ma ago), an era known for the high abundance of coccolithophores and the production of enormous calcium carbonate deposits, exhibited seawater calcium concentrations up to four times present-day levels. We show that calcifying coccolithophore species (Emiliania huxleyi, Gephyrocapsa oceanica and Coccolithus braarudii) are able to maintain their relative fitness (in terms of growth rate and photosynthesis) at simulated Cretaceous seawater calcium concentrations, whereas these rates are severely reduced under these conditions in some non-calcareous phytoplankton species (Chaetoceros sp., Ceratoneis closterium and Heterosigma akashiwo). Most notably, this also applies to a non-calcifying strain of E. huxleyi which displays a calcium-sensitivity similar to the non-calcareous species. We hypothesize that the process of calcification in coccolithophores provides an efficient mechanism to alleviate cellular calcium poisoning and thereby offered a potential key evolutionary advantage, responsible for the proliferation of coccolithophores during times of high seawater calcium concentrations. The exact function of calcification and the reason behind the highly-ornate physical structures of coccoliths remain elusive.
    Keywords: Alkalinity, total; Alkalinity, total, standard deviation; Calcite saturation state; Calcite saturation state, standard deviation; Calcium; Carbon, inorganic, dissolved; Carbon, inorganic, dissolved, standard deviation; Carbon, inorganic, particulate, per cell; Carbon, organic, particulate, per cell; Carbon, organic, particulate, standard deviation; Growth rate; Growth rate, standard deviation; Partial pressure of carbon dioxide, standard deviation; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); Particulate inorganic carbon production per cell; Particulate organic carbon production per cell; pH; Photosynthetic competence; Photosynthetic efficiency, standard deviation; Species; Standard deviation
    Type: Dataset
    Format: text/tab-separated-values, 714 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Müller, Marius N; Beaufort, Luc; Bernard, O; Pedrotti, Maria Luiza; Talec, A; Sciandra, Antoine (2012): Influence of CO2 and nitrogen limitation on the coccolith volume of Emiliania huxleyi (Haptophyta). Biogeosciences, 9(10), 4155-4167, https://doi.org/10.5194/bg-9-4155-2012
    Publication Date: 2024-03-22
    Description: Coccolithophores, a key phytoplankton group, are one of the most studied organisms regarding their physiological response to ocean acidification/carbonation. The biogenic production of calcareous coccoliths has made coccolithophores a promising group for paleoceanographic research aiming to reconstruct past environmental conditions. Recently, geochemical and morphological analyses of fossil coccoliths have gained increased interest in regard to changes in seawater carbonate chemistry. The cosmopolitan coccolithophore Emiliania huxleyi (Lohm.) Hay and Mohler was cultured over a range of pCO2 levels in controlled laboratory experiments under nutrient replete and nitrogen limited conditions. Measurements of photosynthesis and calcification revealed, as previously published, an increase in particulate organic carbon production and a moderate decrease in calcification from ambient to elevated pCO2. The enhancement in particulate organic carbon production was accompanied by an increase in cell diameter. Changes in coccolith volume were best correlated with the coccosphere/cell diameter and no significant correlation was found between the coccolith volume and the particulate inorganic carbon production. The conducted experiments revealed that the coccolith volume of E. huxleyi is variable with aquatic CO2 concentration but its sensitivity is rather small in comparison with its sensitivity to nitrogen limitation. Comparing coccolith morphological and geometrical parameters like volume, mass and size to physiological parameters under controlled laboratory conditions is an important step to understand variations in fossil coccolith geometry.
    Keywords: -; Alkalinity, total; Alkalinity, total, standard deviation; Aragonite saturation state; Bicarbonate ion; Bicarbonate ion, standard deviation; BIOACID; Biological Impacts of Ocean Acidification; Bottles or small containers/Aquaria (〈20 L); Calcification/Dissolution; Calcite saturation state; Calcite saturation state, standard deviation; Calculated using seacarb after Nisumaa et al. (2010); Carbon, inorganic, dissolved; Carbon, organic, particulate/Nitrogen, particulate ratio; Carbon, organic, particulate/Phosphorus, organic, particulate ratio; Carbonate ion; Carbonate ion, standard deviation; Carbonate system computation flag; Carbon dioxide; Carbon dioxide, partial pressure; Carbon dioxide, partial pressure, standard deviation; Carbon dioxide, standard deviation; Cell biovolume; Cell density; Cell density, standard deviation; Cell size; Cell size, standard deviation; Chromista; Coccoliths, other, diameter; Code; Description; Emiliania huxleyi; Experiment; Experimental treatment; Fugacity of carbon dioxide (water) at sea surface temperature (wet air); Gene expression (incl. proteomics); Growth/Morphology; Growth rate; Growth rate, standard deviation; Haptophyta; Laboratory experiment; Laboratory strains; Macro-nutrients; Nitrogen, total, particulate/Phosphorus, organic, particulate, ratio; North Atlantic; OA-ICC; Ocean Acidification International Coordination Centre; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); Particulate inorganic carbon, production, standard deviation; Particulate inorganic carbon/particulate organic carbon ratio; Particulate inorganic carbon/particulate organic carbon ratio, standard deviation; Particulate inorganic carbon production per cell; Particulate organic carbon, production, standard deviation; Particulate organic carbon production per cell; Particulate organic phosphorus production per cell; Pelagos; pH; pH, standard deviation; Phytoplankton; Primary production/Photosynthesis; Salinity; Single species; Species; Standard deviation; Temperature, standard deviation; Temperature, water
    Type: Dataset
    Format: text/tab-separated-values, 397 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Müller, Marius N; Lebrato, Mario; Riebesell, Ulf; Barcelos e Ramos, Joana; Schulz, Kai Georg; Blanco-Ameijeiras, S; Sett, Scarlett; Eisenhauer, Anton; Stoll, Heather M (2014): Influence of temperature and CO2 on the strontium and magnesium composition of coccolithophore calcite. Biogeosciences, 11(4), 1065-1075, https://doi.org/10.5194/bg-11-1065-2014
    Publication Date: 2024-03-15
    Description: Marine calcareous sediments provide a fundamental basis for palaeoceanographic studies aiming to reconstruct past oceanic conditions and understand key biogeochemical element cycles. Calcifying unicellular phytoplankton (coccolithophores) are a major contributor to both carbon and calcium cycling by photosynthesis and the production of calcite (coccoliths) in the euphotic zone, and the subsequent long-term deposition and burial into marine sediments. Here we present data from controlled laboratory experiments on four coccolithophore species and elucidate the relation between the divalent cation (Sr, Mg and Ca) partitioning in coccoliths and cellular physiology (growth, calcification and photosynthesis). Coccolithophores were cultured under different seawater temperature and carbonate chemistry conditions. The partition coefficient of strontium (DSr) was positively correlated with both carbon dioxide (pCO2) and temperature but displayed no coherent relation to particulate organic and inorganic carbon production rates. Furthermore, DSr correlated positively with cellular growth rates when driven by temperature but no correlation was present when changes in growth rates were pCO2-induced. Our results demonstrate the complex interaction between environmental forcing and physiological control on the strontium partitioning in coccolithophore calcite and challenge interpretations of the coccolith Sr / Ca ratio from high-pCO2 environments (e.g. Palaeocene-Eocene thermal maximum). The partition coefficient of magnesium (DMg) displayed species-specific differences and elevated values under nutrient limitation. No conclusive correlation between coccolith DMg and temperature was observed but pCO2 induced a rising trend in coccolith DMg. Interestingly, the best correlation was found between coccolith DMg and chlorophyll a production, suggesting that chlorophyll a and calcite associated Mg originate from the same intracellular pool. These and previous findings indicate that Mg is transported into the cell and to the site of calcification via different pathways than Ca and Sr. Consequently, the coccolith Mg / Ca ratio should be decoupled from the seawater Mg / Ca ratio. This study gives an extended insight into the driving factors influencing the coccolith Mg / Ca ratio and should be considered for future palaeoproxy calibrations.
    Keywords: Alkalinity, total; Alkalinity, total, standard deviation; Aragonite saturation state; Bicarbonate ion; Bicarbonate ion, standard deviation; Biomass/Abundance/Elemental composition; Bottles or small containers/Aquaria (〈20 L); Calcidiscus quadriperforatus; Calcite saturation state; Calcite saturation state, standard deviation; Calculated using CO2SYS; Calculated using seacarb after Nisumaa et al. (2010); Carbon, inorganic, dissolved; Carbon, inorganic, dissolved, standard deviation; Carbon, organic, particulate/Nitrogen, particulate ratio; Carbon, organic, particulate/Nitrogen, particulate ratio, standard deviation; Carbonate ion; Carbonate ion, standard deviation; Carbonate system computation flag; Carbon dioxide; Carbon dioxide, standard deviation; Chlorophyll a, production, standard deviation; Chlorophyll a production per cell; Chromista; Coccolithus braarudii; Coulometric titration; Emiliania huxleyi; Experiment; Fugacity of carbon dioxide (water) at sea surface temperature (wet air); Gephyrocapsa oceanica; Growth rate; Growth rate, standard deviation; Haptophyta; Iron/Calcium ratio; Irradiance; Laboratory experiment; Laboratory strains; Light:Dark cycle; Magnesium/Calcium ratio; Magnesium/Calcium ratio, standard deviation; Magnesium distribution coefficient; Nitrogen, total, particulate production, standard deviation; Not applicable; OA-ICC; Ocean Acidification International Coordination Centre; Partial pressure of carbon dioxide, standard deviation; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); Particulate inorganic carbon, production, standard deviation; Particulate inorganic carbon/particulate organic carbon ratio; Particulate inorganic carbon/particulate organic carbon ratio, standard deviation; Particulate inorganic carbon production per cell; Particulate organic carbon, production, standard deviation; Particulate organic carbon production per cell; Pelagos; pH; pH, standard deviation; Phosphorus/Calcium ratio; Phytoplankton; Potentiometric titration; Salinity; Single species; Species; Strontium, partition coefficient; Strontium/Calcium ratio; Strontium/Calcium ratio, standard deviation; Temperature, water; Total particulate nitrogen production per cell
    Type: Dataset
    Format: text/tab-separated-values, 2247 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: McMinn, Andrew; Müller, Marius N; Martin, Andrew; Ryan, Ken G (2014): The Response of Antarctic Sea Ice Algae to Changes in pH and CO2. PLoS ONE, 9(1), e86984, https://doi.org/10.1371/journal.pone.0086984
    Publication Date: 2024-03-15
    Description: Ocean acidification substantially alters ocean carbon chemistry and hence pH but the effects on sea ice formation and the CO2 concentration in the enclosed brine channels are unknown. Microbial communities inhabiting sea ice ecosystems currently contribute 10-50% of the annual primary production of polar seas, supporting overwintering zooplankton species, especially Antarctic krill, and seeding spring phytoplankton blooms. Ocean acidification is occurring in all surface waters but the strongest effects will be experienced in polar ecosystems with significant effects on all trophic levels. Brine algae collected from McMurdo Sound (Antarctica) sea ice was incubated in situ under various carbonate chemistry conditions. The carbon chemistry was manipulated with acid, bicarbonate and bases to produce a pCO2 and pH range from 238 to 6066 µatm and 7.19 to 8.66, respectively. Elevated pCO2 positively affected the growth rate of the brine algal community, dominated by the unique ice dinoflagellate, Polarella glacialis. Growth rates were significantly reduced when pH dropped below 7.6. However, when the pH was held constant and the pCO2 increased, growth rates of the brine algae increased by more than 20% and showed no decline at pCO2 values more than five times current ambient levels. We suggest that projected increases in seawater pCO2, associated with OA, will not adversely impact brine algal communities.
    Keywords: Alkalinity, total; Alkalinity, total, standard deviation; Antarctic; Aragonite saturation state; Bicarbonate ion; Bottles or small containers/Aquaria (〈20 L); Calcite saturation state; Calculated using CO2SYS; Calculated using seacarb after Nisumaa et al. (2010); Carbon, inorganic, dissolved; Carbon, inorganic, dissolved, standard deviation; Carbonate ion; Carbonate system computation flag; Carbon dioxide; Coast and continental shelf; Coulometric titration; Entire community; EXP; Experiment; Field experiment; Fugacity of carbon dioxide (water) at sea surface temperature (wet air); Growth/Morphology; Growth rate; Growth rate, standard deviation; Maximum photochemical quantum yield of photosystem II; Maximum photochemical quantum yield of photosystem II, standard deviation; McMurdo_Sound_OA; OA-ICC; Ocean Acidification International Coordination Centre; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); Pelagos; pH; Polar; Potentiometric titration; Primary production/Photosynthesis; Salinity; Species; Temperature, water
    Type: Dataset
    Format: text/tab-separated-values, 747 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Müller, Marius N; Trull, Tom W; Hallegraeff, Gustaaf M (2015): Differing responses of three Southern Ocean Emiliania huxleyi ecotypes to changing seawater carbonate chemistry. Marine Ecology Progress Series, 531, 81-90, https://doi.org/10.3354/meps11309
    Publication Date: 2024-03-15
    Description: The invasion of anthropogenic carbon dioxide into the surface ocean is altering seawater carbonate speciation, a process commonly called ocean acidification. The high latitude waters of the Southern Ocean are one of the primary and most severely affected regions. Coccolithophores are an important phytoplankton group, responsible for the majority of pelagic calcium carbonate production in the world's oceans, with a distribution that ranges from tropical to polar waters. Emiliania huxleyi is numerically the most abundant coccolithophore species and appears in several different ecotypes. We tested the effects of ocean acidification on 3 carefully selected E. huxleyi ecotypes isolated from the Southern Ocean. Their responses were measured in terms of growth, photosynthesis, calcification, cellular geometry, and stoichiometry. The 3 ecotypes exhibited differing sensitivities in regards to seawater carbonate chemistry when cultured at the same temperature (14°C) and continuous light (110 µmol photons/m2/s). Under future ocean acidification scenarios, particulate inorganic to organic carbon ratios (PIC:POC) decreased by 38-44, 47-51 and 71-98% in morphotype A 'over-calcified' (A o/c), A and B/C, respectively. All ecotypes reduced their rate of calcification, but the cold-water adapted ecotype (morphotype B/C) was by far the most sensitive, and almost ceased calcification at partial pressure of carbon dioxide ( pCO2) levels above 1000 µatm. We recommend that future surveys for E. huxleyi cells in the Southern Ocean should include the capability of recognising 'naked cells' by molecular and microscopic tools. The distinct differences in the physiological responses of these 3 dominant Southern Ocean coccolithophore ecotypes are likely to have consequences for future coccolithophore community structures and thereby the Southern Ocean carbon cycle.
    Keywords: Alkalinity, total; Alkalinity, total, standard deviation; Aragonite saturation state; Bicarbonate ion; Bicarbonate ion, standard deviation; Biomass/Abundance/Elemental composition; Bottles or small containers/Aquaria (〈20 L); Calcification/Dissolution; Calcite saturation state; Calcite saturation state, standard deviation; Calculated using CO2SYS; Calculated using seacarb after Nisumaa et al. (2010); Carbon, inorganic, dissolved; Carbon, inorganic, dissolved, standard deviation; Carbon, inorganic, particulate, per cell; Carbon, organic, particulate, per cell; Carbon, organic, particulate/Nitrogen, organic, particulate ratio; Carbon, organic, particulate/Nitrogen, organic, particulate ratio, standard deviation; Carbonate ion; Carbonate ion, standard deviation; Carbonate system computation flag; Carbon dioxide; Carbon dioxide, standard deviation; Cell, diameter; Cell, diameter, standard deviation; Cell biovolume; Cell biovolume, standard deviation; Chromista; Coccoliths, diameter; Coccoliths, diameter, standard deviation; Coccoliths, volume; Coccoliths, volume, standard deviation; Emiliania huxleyi; Fugacity of carbon dioxide (water) at sea surface temperature (wet air); Growth/Morphology; Growth rate; Growth rate, standard deviation; Haptophyta; Laboratory experiment; Laboratory strains; Not applicable; OA-ICC; Ocean Acidification International Coordination Centre; Partial pressure of carbon dioxide, standard deviation; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); Particulate inorganic carbon, production, standard deviation; Particulate inorganic carbon/particulate organic carbon ratio; Particulate inorganic carbon/particulate organic carbon ratio, standard deviation; Particulate inorganic carbon per cell, standard deviation; Particulate inorganic carbon production per cell; Particulate organic carbon, production, standard deviation; Particulate organic carbon content per cell, standard deviation; Particulate organic carbon production per cell; Particulate organic nitrogen per cell; Particulate organic nitrogen per cell, standard deviation; Particulate organic nitrogen production, standard deviation; Pelagos; pH; pH, standard deviation; Phytoplankton; Potentiometric titration; Primary production/Photosynthesis; Production of particulate organic nitrogen; Registration number of species; Salinity; Single species; Species; Strain; Temperature, water; Type; Uniform resource locator/link to reference
    Type: Dataset
    Format: text/tab-separated-values, 2082 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2024-03-15
    Description: The ichthyotoxic dinoflagellate Karlodinium veneficum has a worldwide distribution and produces highly potent lytic toxins (karlotoxins) that have been associated with massive fish kill events in coastal environments. The capacity of K. veneficum to gain energy from photosynthesis as well as phagotrophy enables cellular maintenance, growth and dispersal under a broad range of environmental conditions. Coastal ecosystems are highly dynamic in light of the prevailing physicochemical conditions, such as seawater carbonate speciation (CO2, HCO3−, and CO32−) and pH. Here, we monitored the growth rate and ichthyotoxicity of K. veneficum in response to a seawater pH gradient. K. veneficum exhibited a significant linear reduction in growth rate with elevated seawater acidity [pH(totalscale) from 8.05 to 7.50]. Ichthyotoxicity was assessed by exposing fish gill cells to K. veneficum extracts and subsequent quantification of gill cell viability via resorufin fluorescence. Extracts of K. veneficum indicated increased toxicity when derived from elevated pH treatments. The variation in growth rate and toxin production per cell in regard to seawater pH implies that (1) future alteration of seawater carbonate speciation, due to anthropogenic ocean acidification, may negatively influence physiological performance and ecosystem interactions of K. veneficum and (2) elevated seawater pH values (〉8.0) represent favorable conditions for K. veneficum growth and toxicity. This suggests that prey of K. veneficum may be exposed to increased karlotoxin concentrations at conditions when nutrients are scarce and seawater pH has been elevated due to high photosynthetic activity from prior autotrophic phytoplankton blooms.
    Keywords: Alkalinity, total; Alkalinity, total, standard deviation; Aragonite saturation state; Bicarbonate ion; Bottles or small containers/Aquaria (〈20 L); Calcite saturation state; Calculated using seacarb after Nisumaa et al. (2010); Carbon, inorganic, dissolved; Carbon, inorganic, dissolved, standard deviation; Carbonate ion; Carbonate system computation flag; Carbon dioxide; Cell density; Chromista; Fugacity of carbon dioxide (water) at sea surface temperature (wet air); Growth/Morphology; Growth rate; Irradiance; Karlodinium veneficum; Laboratory experiment; Laboratory strains; Myzozoa; Not applicable; OA-ICC; Ocean Acidification International Coordination Centre; Other studied parameter or process; Partial pressure of carbon dioxide, standard deviation; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); Pelagos; pH; pH, standard deviation; Phytoplankton; Salinity; Single species; Species, unique identification; Species, unique identification (Semantic URI); Species, unique identification (URI); Temperature, water; Treatment; Type of study
    Type: Dataset
    Format: text/tab-separated-values, 125 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Barcelos e Ramos, Joana; Müller, Marius N; Riebesell, Ulf (2010): Short-term response of the coccolithophore Emiliania huxleyi to an abrupt change in seawater carbon dioxide concentrations. Biogeosciences, 7(1), 177-186, https://doi.org/10.5194/bg-7-177-2010
    Publication Date: 2024-03-15
    Description: The response of the coccolithophore Emiliania huxleyi to rising CO2 concentrations is well documented for acclimated cultures where cells are exposed to the CO2 treatments for several generations prior to the experiment. The exact number of generations required for acclimation to CO2-induced changes in seawater carbonate chemistry, however, is unknown. Here we show that Emiliania huxleyi's short-term response (26 h) after cultures (grown at 500 µatm) were abruptly exposed to changed CO2 concentrations (~190, 410, 800 and 1500 ?atm) is similar to that obtained with acclimated cultures under comparable conditions in earlier studies. Most importantly, from the lower CO2 levels (190 and 410 ?atm) to 750 and 1500 µatm calcification decreased and organic carbon fixation increased within the first 8 to 14 h after exposing the cultures to changes in carbonate chemistry. This suggests that Emiliania huxleyi rapidly alters the rates of essential metabolical processes in response to changes in seawater carbonate chemistry, establishing a new physiological "state" (acclimation) within a matter of hours. If this relatively rapid response applies to other phytoplankton species, it may simplify interpretation of studies with natural communities (e.g. mesocosm studies and ship-board incubations), where often it is not feasible to allow for a pre-conditioning phase before starting experimental incubations.
    Keywords: Alkalinity, total; Aragonite saturation state; Automated segmented-flow analyzer (Quaatro); Bicarbonate ion; Bottles or small containers/Aquaria (〈20 L); Calcification/Dissolution; Calcification rate of carbon per cell; Calcite saturation state; Calculated using CO2SYS; Calculated using seacarb after Nisumaa et al. (2010); Carbon, inorganic, dissolved; Carbonate ion; Carbonate system computation flag; Carbon dioxide; Chromista; Coulter Counter Z series (Beckman Coulter); Cumulative carbon fixation per cell; Description; Determination of phosphate (Murphy & Riley, 1962); Emiliania huxleyi; Emiliania huxleyi, diameter; EPOCA; EUR-OCEANS; European network of excellence for Ocean Ecosystems Analysis; European Project on Ocean Acidification; Experimental treatment; Fugacity of carbon dioxide (water) at sea surface temperature (wet air); Growth/Morphology; Haptophyta; Laboratory experiment; Laboratory strains; Light:Dark cycle; Maximum photochemical quantum yield of photosystem II; Metrohm Titrando titrator; Not applicable; OA-ICC; Ocean Acidification International Coordination Centre; Organic carbon fixation per cell per hour; PAM (PhytoPAM, Phyto-ED Walz, PPAA0138); Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); Particulate inorganic carbon/particulate organic carbon ratio; Pelagos; pH; Phosphate; Phytoplankton; Primary production/Photosynthesis; Radiation, photosynthetically active; Salinity; see reference(s); Single species; Temperature, water; Total carbon fixation per cell per hour
    Type: Dataset
    Format: text/tab-separated-values, 834 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...