GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 1
    ISSN: 1365-3091
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences
    Notes: A new genetic facies model for deep-water clastic evaporites is presented, based on work carried out on the Messinian Gessoso-solfifera Formation of the northern Apennines during the last 15 years. This model is derived from the most recent siliciclastic turbidite models and describes the downcurrent transformations of a parent flow mainly composed of gypsum clasts. The model allows clearer comprehension of processes controlling the production and deposition of clastic evaporites, representing the most common evaporite facies of the northern Apennines, and the definition of the genetic and stratigraphic relationship with primary shallow-water evaporites formed and preserved in marginal settings. Due to the severe recrystallization processes usually affecting these deposits, petrographic and geochemical analyses are needed for a more accurate interpretation of the large spectrum of recognized gravity-driven deposits ranging from debrisflow to low-density turbidites. Almost all the laminar ‘balatino’ gypsum, previously considered a deep-water primary deposit, is here reinterpreted as the fine-grained product of high to low-density gravity flows. Facies associations permit the framing of the distribution of clastic evaporites into the complex tectonically controlled depositional settings of the Apennine foredeep basin. The Messinian Salinity Crisis occurred during an intense phase of geodynamic reorganization of the Mediterranean area that also produced the fragmentation of the former Miocene Apennine foredeep basin. In this area, primary shallow-water evaporites equivalent to the Mediterranean Lower Evaporites, apparently only formed in semi-closed thrust-top basins like the Vena del Gesso Basin. The subsequent uplift and subaerial exposure of such basins ended the evaporite precipitation and promoted a widespread phase of collapse leading to the resedimentation of the evaporites into deeper basins. Vertical facies sequences of clastic evaporites can be interpreted in terms of the complex interplay between the Messinian tectonic evolution of the Apennine thrust belt and related exhumation–erosional processes. The facies model here proposed could be helpful also for better comprehension of other different depositional and geodynamic contexts; the importance of clastic evaporites deposits has been overlooked in the study of other Mediterranean areas. Based on the Apennine basins experience, it is suggested here that evaporites diffused into the deeper portions of the Mediterranean basin may consist mainly of deep-water resedimented deposits rather than shallow-water to supratidal primary evaporites indicative of a complete basin desiccation.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1365-3091
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences
    Notes: The Messinian Vena del Gesso Basin in the Northern Apennines is filled by very thick (up to 35 m) beds of coarse crystalline gypsum (selenite) associated with thinner carbonate and shaly (euxinic) intercalations. The conventional Usiglio model of salt fractionation does not apply to this evaporitic sequence for the following reasons: carbonate which underlies gypsum is not evaporitic but algal in origin; most gypsum did not precipitate from surface brines but at and below a sediment-water interface occupied by algal mats; a significant portion (10–80%) of gypsum beds is composed of redeposited selenite which was removed from the margins and transported toward the centre of the basin by slope-controlled currents and gravity flows (debris flows).We call this process cannibalistic because of its intraformational character (connected with evaporative fall of water level) and volumetric importance.A recurrent vertical pattern of six main facies (euxinic to gypsum fanglo-merates) is interpreted as a bathymetric, regressive cycle controlled by both sedi-mentological and tectonic-eustatic factors. The inferred environmental setting is a residual turbidite trough (Marnoso-arenacea) evolving abruptly toward lagoonal conditions and filled up to sea level by evaporitic and mechanical (mostly fluvial) processes. Repeated inundations of restricted-marine water started the depositional cycle thirteen or fourteen times.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Sedimentology 27 (1980), S. 0 
    ISSN: 1365-3091
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences
    Notes: Eighteen stratigraphic sections, 200 m thick on average, were logged in basin plain deposits of the Marnoso-arenacea Formation (Miocene, northern Apennines) over an area of 123 × 27 km. Turbidites form 80–90% of the facies association, hemipelagites the remainder. Thin and thick-bedded turbidites are separated by an approximate statistical boundary at 40 cm; most prominent beds (〉 1 m thick) are qualified as megaturbidites. With reference to the main supply-dispersal system (NW to SE), the basin plain can be axially subdivided into proximal, intermediate and distal segments by means of the following parameters: bulk sand content, sand/shale ratio in turbidites, mean thickness of individual layers and component beds, and frequency of thick layers. Almost 40% of thick-bedded turbidites can be traced over the whole study area. These basin-wide deposits form the bulk of the basin fill. Geometrical reconstruction shows that some sandstone beds taper downcurrent from the proximal plain or the adjacent fan area while others thin upcurrent suggesting sand by pass of the fan. Mudstone beds in general thicken towards the end and the margins of the plain indicating that turbidite mud, besides bypassing the fan as a rule, was affected by ponding in the plain. Thin-bedded turbidites have a low sand/shale ratio or are completely muddy representing either tails of sandier turbidites of the outer fan (lobe and fringe deposits) or sheets extending to a great part of or to the whole plain. Sandstone lobes advanced from fans into the plain for 40–50 km gradually thinning and shaling out over a transitional zone of 10–20 km. Their internal geometry shows simple and complex growth patterns: end members are defined as progradational and aggradational. Estimates of original length, width and volume of individual turbidites strongly suggest that flows were usually confined and deflected by basin slopes regardless of source location. Basinal deposits are thus characterized by great thickness and volume, abundance of mud and fine sand, extremely low lateral gradients of thickness and grain size (but rapid wedging near the sides). The basin plain developed as a part of an elongated, oversupplied basin with a ‘highly efficient’, probably delta-fed, dispersal system.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    Geo-marine letters 3 (1984), S. 203-210 
    ISSN: 1432-1157
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences
    Notes: Abstract Submarine fans of different sizes, geometry, and petrology were built in the Marnoso-arenacea Basin, a migrating foredeep within an active continental margin. In an initial depositional stage, a well-developed basin plain received sediment from flows that by-passed restricted fan systems, now buried, located near the north end of an elongated basin. Minor fans grew near the steeper, tectonically deformed side of the basin. In the later stage, turbidite deposition was stopped in the former basin plain. Sediment sources and feeder channels shifted and fed fan lobes that prograded in a narrower trough and were distored (choked). The tectonic control on development of megasequence and sand bodies is stressed here in contrast with previous emphasis on “inner” or “autocyclic” mechanisms.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1432-1157
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences
    Notes: Abstract Over 20 occurrences of discontinuous limestone blocks, locally called “calcari aLucina,” were mapped in the Tuscan—Romagna region of the northern Italian Apennines. The limestones, consisting of a variable mixture of authigenic carbonates (calcite, dolomite, and aragonite), sulfides (primarily pyrite), and allogenic silicates, occur in association with turbidite and hemipelagite units that were deposited in foredeep basins during early to late Miocene times. The limestone blocks are interpreted to represent relicts of carbonate buildups formed around methane-rich fluid vents on the basis of their (1) striking petrographic similarities to carbonates from cold vents in the modern oceans; (2) unique chemosynthetic-like fauna, and (3) anomalously negativeδ 13C values (δ 13C = − 16‰ to − 58‰ PDB). The contemporaneous tectonism of the Apennine orogeny is likely to be the primary cause for the expulsion of the methane-rich fluids to the seabed in a manner analogous to the fluid-flow processes occurring at modern accretionary prisms.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Springer
    Geo-marine letters 3 (1984), S. 71-77 
    ISSN: 1432-1157
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences
    Notes: Abstract The Crati Fan is located in the tectonically active submerged extension of the Apennines chain and foretrough. The small fan system is growing in a relatively shallow (200 to 450 m), elongate nearshore basin receiving abundant input from the Crati River. The fan is characterized by a short, steep, channelized section (inner or upper fan) and a smooth, slightly bulging distal section (outer or lower fan). The numerous subparallel channels head in the shelf or littoral zone and do not form branching distributary patterns. Sand and mud depositional lobes of the outer fan stretch over more than 60% of fan length.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...