GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Document type
Publisher
Years
  • 1
    Publication Date: 2018-09-20
    Description: Atmosphere, Vol. 9, Pages 363: Impact of Air Mass Conditions and Aerosol Properties on Ice Nucleating Particle Concentrations at the High Altitude Research Station Jungfraujoch Atmosphere doi: 10.3390/atmos9090363 Authors: Larissa Lacher Martin Steinbacher Nicolas Bukowiecki Erik Herrmann Assaf Zipori Zamin A. Kanji Ice nucleation is the source of primary ice crystals in mixed-phase clouds. Only a small fraction of aerosols called ice nucleating particles (INPs) catalyze ice formation, with their nature and origin remaining unclear. In this study, we investigate potential predictor parameters of meteorological conditions and aerosol properties for INP concentrations at mixed-phase cloud condition at 242 K. Measurements were conducted at the High Altitude Research Station Jungfraujoch (Switzerland, 3580 m a.s.l.), which is located predominantly in the free troposphere (FT) but can occasionally receive injections from the boundary layer (BLI). Measurements are taken during a long-term study of eight field campaigns, allowing for the first time an interannual (2014–2017) and seasonal (spring, summer, and winter) distinction of high-time-resolution INP measurements. We investigate ranked correlation coefficients between INP concentrations and meteorological parameters and aerosol properties. While a commonly used parameterization lacks in predicting the observed INP concentrations, the best INP predictor is the total available surface area of the aerosol particles, with no obvious seasonal trend in the relationship. Nevertheless, the predicting capability is less pronounced in the FT, which might be caused by ageing effects. Furthermore, there is some evidence of anthropogenic influence on INP concentrations during BLI. Our study contributes to an improved understanding of ice nucleation in the free troposphere, however, it also underlines that a knowledge gap of ice nucleation in such an environment exists.
    Electronic ISSN: 2073-4433
    Topics: Geosciences
    Published by MDPI Publishing
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...