GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    Cham :Springer International Publishing AG,
    Keywords: Precipitation (Meteorology)-Measurement. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (502 pages)
    Edition: 1st ed.
    ISBN: 9783030245689
    Series Statement: Advances in Global Change Research Series ; v.67
    DDC: 551.489011
    Language: English
    Note: Intro -- Preface -- Acknowledgments -- Contents of Volume 1 -- Contents of Volume 2 -- List of Figures -- List of Tables -- Contributors -- Acronyms -- Part I: Status of Observations and Satellite Programs -- Chapter 1: The Global Precipitation Measurement (GPM) Mission -- 1.1 Introduction -- 1.2 Satellite Sensors and Characteristics -- 1.3 Products -- 1.4 Validation -- 1.5 Advancing Precipitation Science -- 1.5.1 Snowfall and Cold-Season Precipitation -- 1.5.2 Drop Size Distributions (DSDs) -- 1.5.3 Latent Heating Products -- 1.6 Applications and Outreach -- 1.6.1 Precipitation Extremes, Food Security, and Health -- 1.6.2 Assimilation and Numerical Modelling -- 1.6.3 Outreach Activities -- 1.7 Beyond GPM -- References -- Chapter 2: Status of the CloudSat Mission -- 2.1 CloudSat Instrument and Measurements -- 2.2 Limitations and Benefits of CloudSat for Precipitation Sensing -- 2.3 CloudSat Mission Operations History -- 2.4 CloudSat Data Products -- 2.4.1 Precipitation Identification and Classification -- 2.4.2 Quantifying Snowfall -- 2.4.3 Quantifying Rainfall -- References -- Chapter 3: The Megha-Tropiques Mission After Seven Years in Space -- 3.1 Introduction -- 3.2 The Status of the Mission -- 3.2.1 Orbital Aspects -- 3.2.2 The MADRAS Radiometer -- 3.2.3 The SAPHIR Sounder -- 3.3 Addressing the Scientific Objectives -- 3.3.1 Precipitation Related Remote Sensing Products from MT Payloads -- 3.3.2 Tropical Science -- 3.3.2.1 Hydrometeorology -- 3.3.2.2 Deep Convection -- 3.4 Addressing the Operational Objective -- 3.4.1 Upstream Investigations -- 3.4.2 Operational Applications -- 3.5 Conclusions and Outlook -- References -- Chapter 4: Microwave Sensors, Imagers and Sounders -- 4.1 Introduction -- 4.2 Characteristics of Microwave Imagers -- 4.2.1 The Electrically Scanning Microwave Radiometers (ESMRs). , 4.2.2 The Scanning Multichannel Microwave Radiometer (SMMR) -- 4.2.3 The Special Sensor Microwave Imager (SSM/I) -- 4.2.4 The TRMM Microwave Imager (TMI) -- 4.2.5 WindSat -- 4.2.6 Advanced Microwave Scanning Radiometer (AMSR) Series -- 4.2.7 GPM Microwave Imager (GMI) -- 4.3 Characteristics of Microwave Sounders -- 4.3.1 Microwave Sounding Unit (MSU) -- 4.3.2 Special Sensor Microwave Temperature and Temperature-2 (SSM/T and SSM/T2) -- 4.3.3 Special Sensor Microwave Imager Sounder (SSMIS) -- 4.3.4 Advanced Microwave Sounding Unit-A and -B (AMSU-A and AMSU-B) and the Microwave Humidity Sounder (MHS) -- 4.3.5 Sondeur Atmosphérique du Profil d´Humidité Intertropicale par Radiométrie (SAPHIR) -- 4.3.6 Advanced Technology Atmospheric Sounder (ATMS) -- 4.4 Summary and Future -- References -- Chapter 5: Microwave and Sub-mm Wave Sensors: A European Perspective -- 5.1 Introduction -- 5.1.1 EPS-SG Microwave Imaging (MWI) Mission -- 5.1.2 EPS-SG Ice Cloud Imaging (ICI) Mission -- 5.2 MWI and ICI Data Processing and Products -- 5.3 Applications -- 5.3.1 Numerical Weather Prediction -- 5.3.2 Climate Monitoring -- 5.3.3 Nowcasting -- 5.4 Copernicus Imaging Microwave Radiometry (CIMR) Mission -- 5.5 Summary -- References -- Chapter 6: Plans for Future Missions -- 6.1 Requirements of Future Global Precipitation Measurement -- 6.2 Technical Developments -- 6.2.1 Radar -- 6.2.2 Microwave Radiometer -- 6.2.3 Infrared Radiometer -- 6.3 Proposed Mission Concepts -- 6.3.1 Missions and Sensors Moving Ahead -- 6.3.2 Missions in Planning Stages -- References -- Part II: Retrieval Techniques, Algorithms and Sensors -- Chapter 7: Introduction to Passive Microwave Retrieval Methods -- 7.1 Theory -- 7.2 Sensors and Algorithms -- 7.2.1 The ESMR Era -- 7.2.2 The SMMR Era -- 7.2.3 The SSM/I Era -- 7.2.4 The TRMM and GPM Era -- 7.2.5 The NOAA AMSU/ATMS Sensor Era -- References. , Chapter 8: The Goddard Profiling (GPROF) Precipitation Retrieval Algorithm -- 8.1 Introduction -- 8.2 GPROF a priori Database -- 8.2.1 Hydrometeor Profiles and Surface Precipitation -- 8.2.2 Ancillary Datasets -- 8.3 Satellite Sensor Pixel Preparation: GPROF Preprocessor -- 8.4 The GPROF Bayesian Retrieval Algorithm -- 8.5 Conclusions -- References -- Chapter 9: Precipitation Estimation from the Microwave Integrated Retrieval System (MiRS) -- 9.1 Background -- 9.2 Algorithm Description -- 9.3 Algorithm Components -- 9.4 Treatment of Hydrometeors -- 9.5 Retrieval Examples -- 9.6 Validation Results -- 9.7 Planned Operational Improvements -- 9.8 Conclusions and Future Work -- References -- Chapter 10: Introduction to Radar Rain Retrieval Methods -- 10.1 Introduction -- 10.2 Formulation of Radar Measurement of Rain -- 10.3 Rain Retrieval Algorithm -- 10.4 Surface Reference Technique (SRT) -- 10.5 Errors in Retrievals -- 10.6 Summary -- References -- Chapter 11: Dual-Frequency Precipitation Radar (DPR) on the Global Precipitation Measurement (GPM) Mission´s Core Observatory -- 11.1 Dual-Frequency Precipitation Radar -- 11.2 Outline of the DPR Data Processing Algorithm -- 11.3 Outline of the DPR L2 Algorithm Modules -- 11.4 Special Features in the DPR Algorithm -- 11.5 Future of the DPR Algorithm -- References -- Chapter 12: DPR Dual-Frequency Precipitation Classification -- 12.1 Introduction -- 12.2 Precipitation Type Classification -- 12.3 Melting Layer Detection -- 12.4 Evaluation of the Dual-Frequency Classification Module -- 12.4.1 Comparison Between Dual-Frequency and TRMM Legacy Single Frequency Methods -- 12.4.2 Surface Snowfall Identification -- 12.4.3 Ground Validation for the Surface Snowfall Identification Algorithm -- References -- Chapter 13: Triple-Frequency Radar Retrievals -- 13.1 Introduction -- 13.1.1 Why Triple-Frequency Radars?. , 13.1.1.1 Why a Triple-Frequency Approach for Rain? -- 13.1.1.2 Why a Triple-Frequency Approach for Ice? -- 13.2 Triple-Frequency Datasets -- 13.3 Triple-Frequency Retrievals -- 13.4 Critical Issues and Open Questions -- 13.5 Recommendations for Future Work -- References -- Chapter 14: Precipitation Retrievals from Satellite Combined Radar and Radiometer Observations -- 14.1 Introduction -- 14.2 The GPM Combined Algorithm -- 14.2.1 Formulation -- 14.2.2 Areas Requiring Improvement -- 14.3 Brightness Temperature - PIA Relationships, Revisited -- 14.4 Summary and Conclusions -- References -- Chapter 15: Scattering of Hydrometeors -- 15.1 Scattering Methods -- 15.1.1 Rayleigh, Mie, and T-Matrix Methods -- 15.1.2 Effective Medium Approximation -- 15.1.3 Rayleigh Gans and Self-Similar Rayleigh Gans Approximation -- 15.1.4 Discrete Dipole Approximation (DDA) -- 15.1.5 Generalized Multiparticle Mie-Solution (GMM) -- 15.2 Hydrometeor Models -- 15.2.1 Liquid Hydrometeors -- 15.2.2 Ice and Snow -- 15.2.3 Melting Ice -- 15.3 Scattering Properties and Scattering Databases -- 15.3.1 Liquid Hydrometeors -- 15.3.2 Ice Crystals, Aggregates, and Rimed Particles -- 15.3.3 Melting Ice -- 15.3.4 Future Directions -- References -- Chapter 16: Radar Snowfall Measurement -- 16.1 Introduction -- 16.2 Radar Snowfall Retrieval Method -- 16.2.1 Factors Impacting Z - S Relations -- 16.2.2 A Z-S Relation -- 16.2.3 Issues Related to Detectability and Attenuation -- 16.3 Results from CloudSat Measurements -- 16.3.1 First Global Snowfall Map -- 16.3.2 Snow Cloud Structures -- 16.4 Guiding Passive Sensors for Snowfall Estimation -- 16.5 Concluding Remarks -- References -- Chapter 17: A 1DVAR-Based Snowfall Rate Algorithm for Passive Microwave Radiometers -- 17.1 Introduction -- 17.2 Data and Models -- 17.2.1 Instruments and Data -- 17.2.2 Logistic Regression. , 17.2.3 Radiative Transfer Model and 1DVAR -- 17.2.4 Ice Particle Terminal Velocity -- 17.3 Snowfall Detection -- 17.3.1 Satellite Module -- 17.3.2 Weather Module -- 17.3.3 Hybrid Algorithm -- 17.3.4 SD Filters -- 17.4 Snowfall Rate -- 17.4.1 Methodology -- 17.4.2 Calibration -- 17.5 Validation -- 17.5.1 SD Validation -- 17.5.2 SFR Validation -- 17.6 Summary and Conclusions -- References -- Chapter 18: X-Band Synthetic Aperture Radar Methods -- 18.1 Introduction -- 18.2 Evidence of Precipitation Signatures on X-SAR Imagery -- 18.3 Forward Model of SAR Response to Rainfall -- 18.3.1 SAR Observing Geometry and Response Model -- 18.3.2 Example of Precipitation-Affected SAR Scene -- 18.4 SAR Precipitation Retrieval Techniques -- 18.4.1 Data Pre-processing -- 18.4.2 Regressive Empirical Algorithm (REA) -- 18.4.3 Probability Matching Algorithm (PMA) -- 18.5 Applications -- 18.5.1 Improving SAR Retrieval Using Background Estimation -- 18.5.2 Statistical Approaches for Retrieval Validation -- 18.5.3 Case Study -- 18.6 Conclusion -- References -- Part III: Merged Precipitation Products -- Chapter 19: Integrated Multi-satellite Retrievals for the Global Precipitation Measurement (GPM) Mission (IMERG) -- 19.1 Introduction -- 19.2 Input Data Sets -- 19.3 IMERG Processing -- 19.4 IMERG Data Set Status -- 19.5 IMERG Performance and Examples -- 19.6 Status for Version 06 and Concluding Remarks -- References -- Chapter 20: Global Satellite Mapping of Precipitation (GSMaP) Products in the GPM Era -- 20.1 Introduction -- 20.2 GSMaP Product List in the GPM Era -- 20.3 Algorithm Description -- 20.3.1 Overall Algorithm Framework -- 20.3.2 Outline of the PMW Algorithm -- 20.3.3 Methodology in the PMW Algorithm -- 20.3.4 Orographic/Non-orographic Rainfall Classification Scheme -- 20.3.5 Modifications Due to Sensor Specifications -- 20.3.6 Snowfall Estimation Method. , 20.3.7 PMW-IR Combined Algorithm.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    Cham :Springer International Publishing AG,
    Keywords: Meteorology. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (797 pages)
    Edition: 1st ed.
    ISBN: 9783030357986
    Series Statement: Advances in Global Change Research Series ; v.69
    DDC: 551.5
    Language: English
    Note: Intro -- Preface -- Acknowledgments -- Contents of Volume 2 -- Contents of Volume 1 -- List of Figures -- List of Tables -- Contributors -- Acronyms -- Part IV: Validation -- Chapter 25: The IPWG Satellite Precipitation Validation Effort -- 25.1 Introduction -- 25.2 Current Validation Work: Data and Methodological Approach -- 25.3 Examples of IPWG Validation -- 25.3.1 Regional Analysis Over Japan Region -- 25.3.2 Seasonal Studies Over South America -- 25.3.3 Examples of IPWG-Related Studies -- 25.4 Future Validation Efforts -- 25.5 Conclusions -- References -- Chapter 26: The GPM Ground Validation Program -- 26.1 Overview -- 26.1.1 GV Measurement Synergy -- 26.2 Validation Instruments, Data, and Examples -- 26.2.1 Primary Datasets -- 26.2.2 Example Applications of VN Datasets -- 26.2.3 Validation Using GV-MRMS -- 26.2.4 Application to Verification of GPM L1SRs -- 26.3 Physical Validation Activities -- 26.4 Validation of the GPM IMERG Product -- 26.4.1 Examples of IMERG Validation Over South Korea -- 26.4.2 Selected Examples of IMERG Validation Over CONUS -- 26.5 Summary and Moving Forward -- References -- Chapter 27: The GPM DPR Validation Program -- 27.1 Introduction -- 27.2 Calibration -- 27.3 Ground Ka-Radar Experiment -- 27.3.1 Measurements -- 27.3.2 Results -- 27.4 Comparisons of DPR Products with Ground Observations -- 27.4.1 GPM/DPR Ground Validation Comparing with Rain Gauge Data Over Japan -- 27.4.2 GPM/DPR Ground Validation with MRMS/NMQ Data Over the US -- 27.4.3 Surface Snow Flag in the Latest DPR Product -- 27.5 Summary -- References -- Chapter 28: Error and Uncertainty Characterization -- 28.1 Uncertainty Sources of Satellite Precipitation Products -- 28.2 Methods for Assessing Satellite Precipitation Products -- 28.2.1 The Benchmark -- 28.2.2 Verification Metrics -- 28.2.3 Triple Collocation Analysis. , 28.3 Error and Uncertainty Models -- 28.4 Summary of the Performance of the Main Satellite Precipitation Products -- References -- Chapter 29: Multiscale Evaluation of Satellite Precipitation Products: Effective Resolution of IMERG -- 29.1 Introduction -- 29.2 Data -- 29.2.1 IMERG -- 29.2.2 MRMS Gauge-Adjusted Radar QPE -- 29.3 Method: Spectral Analysis in the Wavelet Domain -- 29.3.1 Rationale -- 29.3.2 Implementation -- 29.3.3 Illustrative Case Study -- 29.4 Results -- 29.5 Conclusions -- Appendix: Two-Dimensional Discrete Orthogonal Decomposition with the Haar Wavelet -- Wavelets Functions in One Dimension and N Dimensions -- The Haar Discrete Orthogonal Wavelets in One and Two Dimensions -- References -- Chapter 30: Remote Sensing of Orographic Precipitation -- 30.1 Introduction -- 30.2 Orographic Precipitation Measurement -- 30.3 Ground-Validation -- 30.4 Physical-Basis of Retrieval Errors -- 30.5 Summary -- References -- Chapter 31: Integrated Multi-satellite Evaluation for the Global Precipitation Measurement: Impact of Precipitation Types on S... -- 31.1 Introduction -- 31.2 Spaceborne and Ground-Based Precipitation Datasets -- 31.2.1 Dual-Frequency Phased Array Radar -- 31.2.2 GPM Microwave Imager -- 31.2.3 Integrated Multi-satellitE Retrievals for GPM -- 31.2.4 Ground-Based Reference Precipitation -- 31.3 Impact of Precipitation Typology on Satellite-Based Active, Passive and Merged Precipitation Estimation -- 31.3.1 DPR QPE and Precipitation Typology -- 31.3.2 GMI QPE and Precipitation Typology -- 31.3.3 IMERG and Precipitation Typology -- 31.4 Conclusion -- References -- Chapter 32: Hydrologic Validation and Flood Analysis -- 32.1 Introduction -- 32.2 Space-Time Validation Framework -- 32.2.1 Point Based Evaluation -- 32.2.2 River Network Based Multiscale Valuation -- 32.2.3 River Network Based Error Dependence -- 32.3 Conclusions. , References -- Chapter 33: Global-Scale Evaluation of 22 Precipitation Datasets Using Gauge Observations and Hydrological Modeling -- 33.1 Introduction -- 33.2 Data and Methods -- 33.2.1 P Datasets -- 33.2.2 Performance Evaluation Using Gauge Observations -- 33.2.3 Performance Evaluation Using Hydrological Modeling -- 33.3 Results and Discussion -- 33.3.1 Performance in Terms of Temporal Dynamics -- 33.3.2 Performance in Terms of Climate Indices -- 33.3.3 Performance Evaluation Using Hydrological Modeling -- 33.4 Conclusions -- References -- Chapter 34: OceanRAIN - The Global Ocean Surface-Reference Dataset for Characterization, Validation and Evaluation of the Wate... -- 34.1 Introduction -- 34.2 The OceanRAIN Optical Disdrometer ODM470 -- 34.3 Data Ingest and Data Set Construction -- 34.4 OceanRAIN Data Sets -- 34.5 Applications and Validation -- 34.5.1 Precipitation Characterization -- 34.5.2 The Point-to-Area Representativeness -- 34.5.3 IMERG Validation -- 34.6 Conclusions and Future Outlook -- References -- Part V: Observed Characteristics of Precipitation -- Chapter 35: GPCP and the Global Characteristics of Precipitation -- 35.1 Introduction -- 35.2 GPCP Monthly Analysis Technique -- 35.3 Global Precipitation Climatology -- 35.4 Variations in Global Mean Precipitation (1979-2017) -- 35.5 Patterns of Precipitation Variation and Trends -- 35.6 Trends in Precipitation Intensity at the Monthly Scale -- 35.7 Summary -- References -- Chapter 36: Global Snowfall Detection and Measurement -- 36.1 Introduction -- 36.2 Global Snowfall: CloudSat´s Recent Contributions -- 36.3 CloudSat Snowfall Detection and QPE Algorithm -- 36.4 Global Snowfall Characteristics -- 36.4.1 CloudSat Sampling -- 36.4.2 Snowfall Occurrence Statistics -- 36.4.3 CPR Reflectivity Variability: Snowfall Events -- 36.4.4 Snowfall QPE -- 36.5 Concluding Remarks -- References. , Chapter 37: Snowfall Detection by Spaceborne Radars -- 37.1 Introduction -- 37.2 Classical Methods to Determine Surface Precipitation Types -- 37.3 Vertical Phase Distribution from Spaceborne Radars -- 37.4 Use of Dual-Frequency Observations -- 37.5 Future Directions -- References -- Chapter 38: On the Duration and Life Cycle of Precipitation Systems in the Tropics -- 38.1 Introduction -- 38.2 The Climatology and Morphology of the MCS -- 38.2.1 Background and Robust Features -- 38.2.2 TOOCAN Specific Features of Tropical MCS -- 38.3 Precipitation and MCS Duration -- 38.3.1 The Precipitation Totals and the Degree of Organization of Convection -- 38.3.2 The Precipitation Totals and the System Duration -- 38.4 Precipitation and the MCS Life Cycle -- 38.4.1 The Linear Growth/Decay Model for the Cold Cloud Shield Life Cycle -- 38.4.2 Compositing GEO and LEO Along the Life Cycle -- 38.5 Conclusions -- References -- Chapter 39: Observational Characteristics of Warm-Type Heavy Rainfall -- 39.1 Introduction -- 39.2 Data and Analysis Method -- 39.3 Comparison Between Korea and Oklahoma -- 39.4 General Features Found Over the East Asian Monsoon Area -- 39.5 Role of Collision and Coalescence Processes -- 39.6 Conclusions -- References -- Chapter 40: Satellite Precipitation Measurement and Extreme Rainfall -- 40.1 Introduction -- 40.1.1 Physical Principles of Satellite Rainfall Measurements -- 40.1.2 Selected Satellite QPE Products -- 40.2 Statistical Distribution of Rainfall Extremes -- 40.2.1 Average and Maximum Rainfall -- 40.2.2 Thresholds, Percentiles and Spatial Distribution of Daily Extremes -- 40.3 Application of Satellite QPE to Extreme Events -- 40.3.1 Rainfall Extremes at the Daily Scale -- 40.3.2 Daily Rainfall Extremes in Relation to Cyclonic Activity -- 40.3.3 Other Applications of SPPs with Respect to Rainfall Extremes. , 40.4 Verification of Satellite QPE Extremes with Respect to In-Situ Rain Gauge Observations -- 40.5 Conclusions and Future Directions in Satellite QPEs for Extreme Events Measurements -- References -- Chapter 41: Rainfall Trends in East Africa from an Ensemble of IR-Based Satellite Products -- 41.1 Introduction -- 41.2 Data and Methods -- 41.2.1 Satellite Products -- 41.2.2 Rainfall Indices and Trend Analysis Methodology -- 41.3 Rainfall Seasonality and Variability -- 41.4 Trend Results -- 41.4.1 Trend Analysis of Annual Rainfall Indices -- 41.4.2 Trend Analysis of Seasonal Rainfall Indices -- 41.4.2.1 January-February (JF) Season -- 41.4.2.2 March-April-May (MAM) Season -- 41.4.2.3 June-July-August-September (JJAS) Season -- 41.4.2.4 October-November-December (OND) season -- 41.5 Conclusions -- References -- Chapter 42: Heavy Precipitation Systems in the Mediterranean Area: The Role of GPM -- 42.1 Introduction -- 42.2 Satellite Precipitation Products -- 42.3 Isolated Deep-Convective Systems -- 42.4 Mesoscale Convective Systems -- 42.5 Medicanes -- 42.6 Final Remarks -- References -- Chapter 43: Dryland Precipitation Climatology from Satellite Observations -- 43.1 Introduction -- 43.2 Background on Dryland Climate -- 43.3 Accuracy of Satellite Precipitation Estimates for Dryland Regions -- 43.4 Satellite-Derived Climatological Properties of Dryland Precipitation -- 43.5 Quasi-Global Dryland Precipitation Climatology from TRMM Observations -- 43.6 Conclusions and Recommendations -- References -- Chapter 44: Hailfall Detection -- 44.1 Physical Basis -- 44.2 Microwave Imager and Active Radar Retrievals -- 44.3 Microwave Sounder Retrievals -- 44.3.1 MicroWave Cloud Classification (MWCC) -- 44.3.2 Hail Detection with MWCC Method -- 44.3.3 NOAA AMSU-b/MHS -- 44.4 Summary -- References. , Chapter 45: Improving High-Latitude and Cold Region Precipitation Analysis.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Keywords: Atmospheric sciences. ; Meteorology. ; Physical measurements. ; Measurement   . ; Hydrology. ; Climate change. ; Climatology.
    Description / Table of Contents: SECTION 4 Validation: Chapter 25. The IPWG satellite precipitation validation effort -- Chapter 26. The GPM Ground Validation Program -- Chapter 27. The GPM DPR Validation Program -- Chapter 28. Error and uncertainty characterization -- Chapter 29. Multiscale evaluation of satellite precipitation products: Effective resolution of IMERG -- Chapter 30. Remote sensing of orographic precipitation -- Chapter 31. Integrated multi-satellite evaluation for the Global Precipitation Measurement: Impact of precipitation types on spaceborne precipitation estimation -- Chapter 32. Hydrologic validation and flood analysis -- Chapter 33. Global-scale evaluation of 22 precipitation datasets using gauge observations and hydrological modeling -- Chapter 34. OceanRAIN – The global ocean surface-reference dataset for characterization, validation and evaluation of the water cycle -- SECTION 5 Observed Characteristics of Precipitation: Chapter 35. GPCP and the global characteristics of precipitation -- Chapter 36. Global snowfall detection and measurement -- Chapter 37. Snowfall detection by spaceborne radars -- Chapter 38. On the duration and lifecyle of precipitation systems in the tropics -- Chapter 39. Observational characteristics of warm-type heavy rainfall -- Chapter 40. Satellite precipitation measurement and extreme rainfall -- Chapter 41. Rainfall trends in East Africa from an ensemble of IR-based satellite products -- Chapter 42. Heavy precipitation systems in the Mediterranean area: The role of GPM -- Chapter 43. Dryland precipitation climatology from satellite observations -- Chapter 44. Haifall detection -- Chapter 45. Improving high-latitude and cold region precipitation analysis -- Chapter 46. Latent heating retrievals from satellite observations -- SECTION 6 Applications: Chapter 47. Operational applications of Global Precipitation Measurement observations -- Chapter 48. Assimilation of precipitation observations from space into numerical weather prediction (NWP) -- Chapter 49. Precipitation ensemble data assimilation in NWP models -- Chapter 50. PERSIANN-CDR for hydrology and hydro-climatic applications -- Chapter 51. Soil moisture and precipitation: The SM2RAIN algorithm for rainfall retrieval from satellite soil moisture -- Chapter 52. Drought risk management using satellite-based rainfall estimates -- Chapter 53. Two decades of urban hydroclimatological studies have yielded discovery and societal benefits -- Chapter 54. Validation of climate models -- Chapter 55. Extreme precipitation in the Himalayan landslide hotspot -- Chapter 56. The value of satellite rainfall estimates in agriculture and food security -- Chapter 57. Using satellite estimates of precipitation for fire danger rating -- Chapter 58. Variability of satellite sea surface salinity under rainfall.
    Type of Medium: Online Resource
    Pages: 1 Online-Ressource(XCIII, 725 p. 300 illus., 251 illus. in color.)
    Edition: 1st ed. 2020.
    ISBN: 9783030357986
    Series Statement: Advances in Global Change Research 69
    Language: English
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Keywords: Atmospheric sciences. ; Hydrology. ; Meteorology. ; Climate change. ; Climatology. ; Physical measurements. ; Measurement   .
    Description / Table of Contents: SECTION 1 Status of Observations and Satellite Programs: Chapter 1. The Global Precipitation Measurement (GPM) mission -- Chapter 2. Status of the CloudSat mission -- Chapter 3. The Megha-Tropiques mission after seven years in space -- Chapter 4. Microwave sensors, imagers and sounders -- Chapter 5. Microwave and sub-mm wave sensors: A European perspective -- Chapter 6. Plans for future missions -- SECTION 2 Retrieval Techniques, Algorithms and Sensors: Chapter 7. Introduction to passive microwave retrieval methods -- Chapter 8. The Goddard Profiling (GPROF) precipitation retrieval algorithm -- Chapter 9. Precipitation estimation from the Microwave Integrated Retrieval System (MiRS) -- Chapter 10. Introduction to radar rain retrieval methods -- Chapter 11. Dual-frequency Precipitation Radar (DPR) on the Global Precipitation Measurements (GPM) mission’s Core Observatory -- Chapter 12. DPR dual-frequency precipitation classification -- Chapter 13. Triple-frequency radar retrievals -- Chapter 14. Precipitation retrievals from satellite combined radar and radiometer observations -- Chapter 15. Scattering of hydrometeors -- Chapter 16. Radar snowfall measurement -- Chapter 17. A 1DVar-based snowfall rate algorithm for passive microwave radiometers -- Chapter 18. X-band synthetic aperture radar methods -- SECTION 3 Merged Precipitation Products: Chapter 19. Integrated Multi-satellitE Retrievals for the Global Precipitation Measurement (GPM) mission (IMERG) -- Chapter 20. Global Satellite Mapping of Precipitation (GSMaP) products in the GPM era -- Chapter 21. Improving PERSIANN-CCS using passive microwave rainfall estimation -- Chapter 22. TAMSAT -- Chapter 23. Algorithm and data improvements for version 2.1 of the Climate Hazards Center’s Infrared Precipitation with Stations Data Set -- Chapter 24. Merging the infrared fleet and the microwave constellation for tropical hydrometeorology (TAPEER) and global climate monitoring (GIRAFE) applications -- SECTION 4 Validation: Chapter 25. The IPWG satellite precipitation validation effort -- Chapter 26. The GPM Ground Validation Program -- Chapter 27. The GPM DPR Validation Program -- Chapter 28. Error and uncertainty characterization -- Chapter 29. Multiscale evaluation of satellite precipitation products: Effective resolution of IMERG -- Chapter 30. Remote sensing of orographic precipitation -- Chapter 31. Integrated multi-satellite evaluation for the Global Precipitation Measurement: Impact of precipitation types on spaceborne precipitation estimation -- Chapter 32. Hydrologic validation and flood analysis -- Chapter 33. Global-scale evaluation of 22 precipitation datasets using gauge observations and hydrological modeling -- Chapter 34. OceanRAIN – The global ocean surface-reference dataset for characterization, validation and evaluation of the water cycle -- SECTION 5 Observed Characteristics of Precipitation: Chapter 35. GPCP and the global characteristics of precipitation -- Chapter 36. Global snowfall detection and measurement -- Chapter 37. Snowfall detection by spaceborne radars -- Chapter 38. On the duration and lifecyle of precipitation systems in the tropics -- Chapter 39. Observational characteristics of warm-type heavy rainfall -- Chapter 40. Satellite precipitation measurement and extreme rainfall -- Chapter 41. Rainfall trends in East Africa from an ensemble of IR-based satellite products -- Chapter 42. Heavy precipitation systems in the Mediterranean area: The role of GPM -- Chapter 43. Dryland precipitation climatology from satellite observations -- Chapter 44. Haifall detection -- Chapter 45. Improving high-latitude and cold region precipitation analysis -- Chapter 46. Latent heating retrievals from satellite observations -- SECTION 6 Applications: Chapter 47. Operational applications of Global Precipitation Measurement observations -- Chapter 48. Assimilation of precipitation observations from space into numerical weather prediction (NWP) -- Chapter 49. Precipitation ensemble data assimilation in NWP models -- Chapter 50. PERSIANN-CDR for hydrology and hydro-climatic applications -- Chapter 51. Soil moisture and precipitation: The SM2RAIN algorithm for rainfall retrieval from satellite soil moisture -- Chapter 52. Drought risk management using satellite-based rainfall estimates -- Chapter 53. Two decades of urban hydroclimatological studies have yielded discovery and societal benefits -- Chapter 54. Validation of climate models -- Chapter 55. Extreme precipitation in the Himalayan landslide hotspot -- Chapter 56. The value of satellite rainfall estimates in agriculture and food security -- Chapter 57. Using satellite estimates of precipitation for fire danger rating -- Chapter 58. Variability of satellite sea surface salinity under rainfall.
    Type of Medium: Online Resource
    Pages: 1 Online-Ressource(LXXI, 450 p. 138 illus.)
    Edition: 1st ed. 2020.
    ISBN: 9783030245689
    Series Statement: Advances in Global Change Research 67
    Language: English
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2017-09-12
    Description: NFATc1 controls the cytotoxicity of CD8 + T cells Nature Communications, Published online: 11 September 2017; doi:10.1038/s41467-017-00612-6 NFAT nuclear translocation has been shown to be required for CD8 + T cell cytokine production in response to viral infection. Here the authors show NFATc1 controls the cytotoxicity and metabolic switching of activated CD8 + T cells required for optimal response to bacteria and tumor cells.
    Electronic ISSN: 2041-1723
    Topics: Biology , Chemistry and Pharmacology , Natural Sciences in General , Physics
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2022-05-27
    Description: Author Posting. © American Meteorological Society, 2021. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Bulletin of the American Meteorological Society 102(10), (2021): E1897–E1935, https://doi.org/10.1175/BAMS-D-19-0316.1.
    Description: Life on Earth vitally depends on the availability of water. Human pressure on freshwater resources is increasing, as is human exposure to weather-related extremes (droughts, storms, floods) caused by climate change. Understanding these changes is pivotal for developing mitigation and adaptation strategies. The Global Climate Observing System (GCOS) defines a suite of essential climate variables (ECVs), many related to the water cycle, required to systematically monitor Earth’s climate system. Since long-term observations of these ECVs are derived from different observation techniques, platforms, instruments, and retrieval algorithms, they often lack the accuracy, completeness, and resolution, to consistently characterize water cycle variability at multiple spatial and temporal scales. Here, we review the capability of ground-based and remotely sensed observations of water cycle ECVs to consistently observe the hydrological cycle. We evaluate the relevant land, atmosphere, and ocean water storages and the fluxes between them, including anthropogenic water use. Particularly, we assess how well they close on multiple temporal and spatial scales. On this basis, we discuss gaps in observation systems and formulate guidelines for future water cycle observation strategies. We conclude that, while long-term water cycle monitoring has greatly advanced in the past, many observational gaps still need to be overcome to close the water budget and enable a comprehensive and consistent assessment across scales. Trends in water cycle components can only be observed with great uncertainty, mainly due to insufficient length and homogeneity. An advanced closure of the water cycle requires improved model–data synthesis capabilities, particularly at regional to local scales.
    Description: WD acknowledges ESA’s QA4EO (ISMN) and CCI Soil Moisture projects. WD, CRV, AG, and KL acknowledge the G3P project, which has received funding from the European Union’s Horizon 2020 research and innovation programme under Grant Agreement 870353. MIH and MS acknowledge ESA’s CCI Water Vapour project. MS and RH acknowledges the support by the EUMETSAT member states through CM SAF. DGM acknowledges support from the European Research Council (ERC) under Grant Agreement 715254 (DRY–2–DRY). Part of this research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration (80NM0018D0004).
    Description: 2022-04-01
    Keywords: Hydrologic cycle ; Satellite observations ; Surface fluxes ; Surface observations ; Water masses/storage ; Water budget/balance
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...