GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2023-11-15
    Description: Droughts can lead to extreme low flow situations in rivers, with resulting severe impacts. Upstream snow and ice melt in many of the world's mountain water towers can alleviate the hydrological consequences of drought, yet global warming threatens the cryosphere. To improve the understanding of melt water contributions during drought in the case of future glacier retreat, we developed stress‐test storyline scenarios to model streamflow and tested them in the European river Rhine basin. Meteorological conditions of past drought and low flow years in Europe, 1976, 2003, and 2018, were repeated at three future moments in time, representing nowadays, near future and far future conditions. The latter two conditions were obtained by climate projections under the RCP8.5 scenario. Results show that the low flow situations caused by the meteorological drought situations aggravate in future conditions, more so for the far future and for the year 2003 because of the relatively large glacier ice melt contribution in the past. Summer (July–September) streamflow may decline by 5%–25% far downstream and 30%–70% upstream and the duration of extreme low flow situations may double compared to the selected past drought events. These results are relevant for the Rhine as a major European river but stand exemplary for many other river basins and highlight the importance of cryospheric changes for downstream low flow situations in a changing climate. The stress‐test scenarios allow a glimpse into future extreme low flow events aiding adaptation planning, and might be adapted to include other important low flow drivers.
    Description: Plain Language Summary: Extended periods with strongly reduced rainfall, in combination with hot summers, lead to accumulating water shortages. As a result, water levels in rivers drop which causes problems, e.g., for shipping, cooling of power plants and drinking and irrigation water supply. During such drought periods, melt water from snow and ice is important for water supply. However, glaciers are projected to further decline in a warming climate, possibly worsen future low flow situations. To quantify this effect, we modeled the amount of water flowing through the Rhine basin (a) for past low flow events in 1976, 2003, and 2018 and (b) for hypothetical situations where we repeat the weather data of those past low flow years at three moments in the future. The results show that flows upstream and downstream in the river Rhine would get even lower in future conditions and cause low flow situations to lengthen considerably. Especially for the year 2003, which had high ice melt contributions in the past, changes are large. In summer, the flow during already critical low flow situations may decrease by up to 70% upstream, and by up to 30% downstream. The results show a glimpse into future low flow events and may help adaptation planning.
    Description: Key Points: A model framework for the Rhine basin was developed to simulate streamflow during extreme past drought years in future conditions. Extreme low flows as in 1976, 2003, and 2018 would aggravate in a future with declined glacier cover and snow pack. Repeating the drought and heatwave of 2003 in the future results in largest reductions in summer streamflow (70% upstream, 30% downstream).
    Description: CHR, International Commission for the Hydrology of the Rhine Basin
    Description: STAY! Scholarship New University Endowment Freiburg
    Description: https://doi.org/10.1002/joc.773
    Description: https://www.geo.uzh.ch/en/units/h2k/Services/HBV-Model/HBV-Download.html
    Description: https://doi.org/10.6094/UNIFR/233644
    Description: https://doi.org/10.6094/UNIFR/226494
    Description: https://doi.org/10.6094/UNIFR/226492
    Description: https://doi.org/10.6094/UNIFR/233639
    Description: https://doi.org/10.1657/1938-4246-46.4.933
    Description: https://doi.org/10.1080/00291957708545328
    Description: https://doi.org/10.3189/172756411799096295
    Keywords: ddc:551.48 ; drought and low flows ; glacier ; upstream‐downstream ; glacio‐hydrological modeling ; Rhine ; stress‐test storylines
    Language: English
    Type: doc-type:article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2021-10-13
    Description: Meltwater from glaciers is not only a stable source of water but also affects downstream streamflow dynamics. One of these dynamics is the interannual variability of streamflow. Glaciers can moderate streamflow variability because the runoff in the glacierized part, driven by temperature, correlates negatively with the runoff in the non-glacierized part of a catchment, driven by precipitation, thereby counterbalancing each other. This is also called the glacier compensation effect (GCE), and the effect is assumed to depend on relative glacier cover. Previous studies found a convex relationship between streamflow variability and glacier cover of different glacierized catchments, with lowest streamflow variability at a certain optimum glacier cover. In this study, we aim to revisit these previously found curves to find out if a universal relationship between interannual streamflow variability and glacier cover exists, which could potentially be used in a space-for-time substitution analysis. Moreover, we test the hypothesis that the dominant climate drivers (here precipitation and temperature) switch around the suggested optimum of the curve. First, a set of virtual nested catchments, with the same absolute glacier area but varying non-glacierized area, were modelled to isolate the effect of glacier cover on streamflow variability. The modelled relationship was then compared with a multicatchment data set of gauged glacierized catchments in the European Alps. In the third step, changes of the GCE curve over time were analysed. Model results showed a convex relationship and the optimum in the simulated curve aligned with a switch in the dominant climate driver. However, the multicatchment data and the time change analyses did not suggest the existence of a universal convex relationship. Overall, we conclude that GCE is complex due to entangled controls and changes over time in glacierized catchments. Therefore, care should be taken to use a GCE curve for estimating and/or predicting interannual streamflow variability in glacierized catchments.
    Keywords: 551.48 ; glacier compensation effect ; glacierized catchments ; interannual variability ; modelling experiment ; space-for-time substitution ; streamflow
    Language: English
    Type: map
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...