GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Journal of oceanography 52 (1996), S. 235-249 
    ISSN: 1573-868X
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences
    Notes: Abstract A new set of multi-channel sea surface temperature (MCSST) equations for the Advanced Very High Resolution Radiometer (AVHRR) on NOAA-9 is derived from regression analyses between two-channel brightness temperatures andin situ SST obtained from moored buoys around Japan. Two equations are derived: one for daytime and the other for nighttime. They are linear split window type and both the equations contain a term dependent on satellite zenith angle, which has not been accounted for in the previous daytime split window equations for NOAA-9. It is shown that the new set of equation can give SSTs in much better precision than those without the zenith-angle-dependent terms. It is also found that the split window equation for NOAA-9 provided by the National Oceanographic and Atmospheric Administration/National Environmental Satellite, Data and Information Service (NOAA/NESDIS) considerably underestimates the daytime SSTs; sometimes nighttime SSTs are evenhigher than daytime SSTs. This is because the zenith angle effect to the radiation deficiet is neglected in the daytime equation by NOAA/NESDIS. By using the new MCSST equations, it is expected that the quality of satellite MCSST would be much improved, at least in regional applications around Japan, for the period of NOAA-9's operation.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2021-06-14
    Description: Ocean temperature observations are crucial for a host of climate research and forecasting activities, such as climate monitoring, ocean reanalysis and state estimation, seasonal-to-decadal forecasts, and ocean forecasting. For all of these applications, it is crucial to understand the uncertainty attached to each of the observations, accounting for changes in instrument technology and observing practices over time. Here, we describe the rationale behind the uncertainty specification provided for all in situ ocean temperature observations in the International Quality-controlled Ocean Database (IQuOD) v0.1, a value-added data product served alongside the World Ocean Database (WOD). We collected information from manufacturer specifications and other publications, providing the end user with uncertainty estimates based mainly on instrument type, along with extant auxiliary information such as calibration and collection method. The provision of a consistent set of observation uncertainties will provide a more complete understanding of historical ocean observations used to examine the changing environment. Moving forward, IQuOD will continue to work with the ocean observation, data assimilation and ocean climate communities to further refine uncertainty quantification. We encourage submissions of metadata and information about historical practices to the IQuOD project and WOD.
    Description: Published
    Description: 689695
    Description: 4A. Oceanografia e clima
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-10-26
    Description: © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Cowley, R., Killick, R. E., Boyer, T., Gouretski, V., Reseghetti, F., Kizu, S., Palmer, M. D., Cheng, L., Storto, A., Le Menn, M., Simoncelli, S., Macdonald, A. M., & Domingues, C. M. International Quality-Controlled Ocean Database (IQuOD) v0.1: the temperature uncertainty specification. Frontiers in Marine Science, 8, (2021): 689695, https://doi.org/10.3389/fmars.2021.689695.
    Description: Ocean temperature observations are crucial for a host of climate research and forecasting activities, such as climate monitoring, ocean reanalysis and state estimation, seasonal-to-decadal forecasts, and ocean forecasting. For all of these applications, it is crucial to understand the uncertainty attached to each of the observations, accounting for changes in instrument technology and observing practices over time. Here, we describe the rationale behind the uncertainty specification provided for all in situ ocean temperature observations in the International Quality-controlled Ocean Database (IQuOD) v0.1, a value-added data product served alongside the World Ocean Database (WOD). We collected information from manufacturer specifications and other publications, providing the end user with uncertainty estimates based mainly on instrument type, along with extant auxiliary information such as calibration and collection method. The provision of a consistent set of observation uncertainties will provide a more complete understanding of historical ocean observations used to examine the changing environment. Moving forward, IQuOD will continue to work with the ocean observation, data assimilation and ocean climate communities to further refine uncertainty quantification. We encourage submissions of metadata and information about historical practices to the IQuOD project and WOD.
    Description: This work was supported by the Scientific Committee on Oceanic Research (SCOR) Working Group 148, funded by national SCOR committees and a grant to SCOR from the U.S. National Science Foundation (Grant OCE-1546580); and the Intergovernmental Oceanographic Commission of UNESCO/International Oceanographic Data and Information Exchange (IOC/IODE) IQuOD Steering Group. RC was supported through funding from the Earth Systems and Climate Change Hub of the Australian Government's National Environmental Science Program. RK and MP were supported by the Met Office Hadley Centre Climate Programme funded by BEIS and Defra. CD was supported by the Australian Research Council (Discovery Grant DP160103130), ARC Centre of Excellence for Climate Extremes (CE170100023) and by the Natural Environment Research Council (TICTOC, NE/P019293/1). AM's contribution was supported by National Science Foundation grant OCE#-1923387 and National Oceanographic and Atmospheric Administration grant #NA16OAR4310172.
    Keywords: XBT ; Ocean temperature profiles ; Ocean data assimilation ; Ocean climate ; Accuracy ; Uncertainty ; Bias correction
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2024-01-04
    Description: The historical archive of global ocean subsurface temperature contains a large proportion of poorly quality-controlled as well as biased data. As a result, efforts to analyze past ocean change and variability are confounded, as is the use of ocean data assimilation systems. Currently many data centers perform automated ‘quick and dirty QC’ – redoing the same job poorly many times around the world. There have been no previous efforts to form a clean and definitive and very much needed historical archive. No single group has the manpower and resources to do the job properly – thus international cooperation is needed. The IQuOD 4th Workshop goals are to: Provide updates on recent IQuOD activities, particularly SCOR WG 148 and IOC/IODE; progress on the development and implementation of intelligent metadata, uncertainty estimates, duplicates flagging and the platform for AutoQC benchmarking tests; plans for next steps for the task teams; discussion on capacity building; establishing synergies between IQuOD and the XBT Science Team.
    Description: Published
    Description: Non Refereed
    Keywords: ASFA_2015::O::Oceanographic instruments ; ASFA_2015::I::In situ temperature ; ASFA_2015::T::Temperature profiles ; ASFA_2015::Q::Quality control ; ASFA_2015::S::Subsurface water ; ASFA_2015::C::Conductivity-temperature-depth observations ; ASFA_2015::S::Salinity profiles ; ASFA_2015::X::XBTs ; ASFA_2015::M::Mechanical bathythermographs
    Repository Name: AquaDocs
    Type: Book/Monograph/Conference Proceedings
    Format: 36pp.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...