GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2020-08-03
    Description: In order to assess the global evolution of aerosol parameters affecting climate change, a long-term trend analyses of aerosol optical properties were performed on time series from 52 stations situated across five continents. The time series of measured scattering, backscattering and absorption coefficients as well as the derived single scattering albedo, backscattering fraction, scattering and absorption Ångström exponents covered at least 10 years and up to 40 years for some stations. The non-parametric seasonal Mann-Kendall (MK) statistical test associated with several prewhitening methods and with the Sen’s slope were used as main trend analysis methods. Comparisons with General Least Mean Square associated with Autoregressive Bootstrap (GLS/ARB) and with standard Least Mean Square analysis (LMS) enabled confirmation of the detected MK statistically significant trends and the assessment of advantages and limitations of each method. Currently, scattering and backscattering coefficients trends are mostly decreasing in Europe and North America and are not statistically significant in Asia, while polar stations exhibit a mix of increasing and decreasing trends. A few increasing trends are also found at some stations in North America and Australia. Absorption coefficients time series also exhibit primarily decreasing trends. For single scattering albedo, 52% of the sites exhibit statistically significant positive trends, mostly in Asia, Eastern/Northern Europe and Arctic, 18% of sites exhibit statistically significant negative trends, mostly in central Europe and central North America, while the remaining 30% of sites have trends, which are not statistically significant. In addition to evaluating trends for the overall time series, the evolution of the trends in sequential 10 year segments was also analyzed. For scattering and backscattering, statistically significant increasing 10 year trends are primarily found for earlier periods (10 year trends ending in 2010-2015) for polar stations and Mauna Loa. For most of the stations, the present-day statistically significant decreasing 10 year trends of the single scattering albedo were preceded by not statistically significant and statistically significant increasing 10 year trends. The effect of air pollution abatement policies in continental North America is very obvious in the 10 year trends of the scattering coefficient – there is a shift to statistically significant negative trends in 2010-2011 for all stations in the eastern and central US. This long-term trend analysis of aerosol radiative properties with a broad spatial coverage enables a better global view of potential aerosol effects on climate changes.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2023-07-04
    Description: Data assimilation of satellite microwave measurements is one of the importantkeys to improving weather forecasting over the Arctic region. However, the useofsurface-sensitivemicrowave-soundingchannelmeasurementsfordataassim-ilation or retrieval has been limited, especially during winter, due to the poorlyconstrained sea ice emissivity. In this study, aiming at more use of those channelmeasurements in the data assimilation, we propose an explicit method for speci-fying the surface radiative boundary conditions (namely emissivity and emittinglayer temperature of snow and ice). These were explicitly determined with aradiativetransfermodelforsnowandiceandwithsnow/icephysicalparameters(i.e. snow/ice depths and vertical distributions of temperature, density, salinity,and grain size) simulated from the thermodynamically driven snow/ice growthmodel. We conducted 1D-Var experiments in order to examine whether thisapproach can help to use the surface-sensitive microwave temperature channelmeasurements over the Arctic sea ice region for data assimilation. Results showthat (1) the surface-sensitive microwave channels can be used in the 1D-Varretrieval, and (2) the specification of the radiative boundary condition at thesurface using the snow/sea ice emission model can significantly improve theatmospheric temperature retrieval, especially in the lower troposphere (500hPato surface). The successful retrieval suggests that useful information can beextracted from surface-sensitive microwave-sounding channel radiances oversea ice surfaces through the explicit determination of snow/ice emissivity andemitting layer temperature.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-11-03
    Description: 〈jats:p〉Abstract. Aerosol particles are a complex component of the atmospheric system which influence climate directly by interacting with solar radiation, and indirectly by contributing to cloud formation. The variety of their sources, as well as the multiple transformations they may undergo during their transport (including wet and dry deposition), result in significant spatial and temporal variability of their properties. Documenting this variability is essential to provide a proper representation of aerosols and cloud condensation nuclei (CCN) in climate models. Using measurements conducted in 2016 or 2017 at 62 ground-based stations around the world, this study provides the most up-to-date picture of the spatial distribution of particle number concentration (Ntot) and number size distribution (PNSD, from 39 sites). A sensitivity study was first performed to assess the impact of data availability on Ntot's annual and seasonal statistics, as well as on the analysis of its diel cycle. Thresholds of 50 % and 60 % were set at the seasonal and annual scale, respectively, for the study of the corresponding statistics, and a slightly higher coverage (75 %) was required to document the diel cycle. Although some observations are common to a majority of sites, the variety of environments characterizing these stations made it possible to highlight contrasting findings, which, among other factors, seem to be significantly related to the level of anthropogenic influence. The concentrations measured at polar sites are the lowest (∼ 102 cm−3) and show a clear seasonality, which is also visible in the shape of the PNSD, while diel cycles are in general less evident, due notably to the absence of a regular day–night cycle in some seasons. In contrast, the concentrations characteristic of urban environments are the highest (∼ 103–104 cm−3) and do not show pronounced seasonal variations, whereas diel cycles tend to be very regular over the year at these stations. The remaining sites, including mountain and non-urban continental and coastal stations, do not exhibit as obvious common behaviour as polar and urban sites and display, on average, intermediate Ntot (∼ 102–103 cm−3). Particle concentrations measured at mountain sites, however, are generally lower compared to nearby lowland sites, and tend to exhibit somewhat more pronounced seasonal variations as a likely result of the strong impact of the atmospheric boundary layer (ABL) influence in connection with the topography of the sites. ABL dynamics also likely contribute to the diel cycle of Ntot observed at these stations. Based on available PNSD measurements, CCN-sized particles (considered here as either >50 nm or >100 nm) can represent from a few percent to almost all of Ntot, corresponding to seasonal medians on the order of ∼ 10 to 1000 cm−3, with seasonal patterns and a hierarchy of the site types broadly similar to those observed for Ntot. Overall, this work illustrates the importance of in situ measurements, in particular for the study of aerosol physical properties, and thus strongly supports the development of a broad global network of near surface observatories to increase and homogenize the spatial coverage of the measurements, and guarantee as well data availability and quality. The results of this study also provide a valuable, freely available and easy to use support for model comparison and validation, with the ultimate goal of contributing to improvement of the representation of aerosol–cloud interactions in models, and, therefore, of the evaluation of the impact of aerosol particles on climate. 〈/jats:p〉
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , NonPeerReviewed
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-11-03
    Description: 〈jats:p〉Abstract. Aerosol particles are essential constituents of the Earth's atmosphere, impacting the earth radiation balance directly by scattering and absorbing solar radiation, and indirectly by acting as cloud condensation nuclei. In contrast to most greenhouse gases, aerosol particles have short atmospheric residence times, resulting in a highly heterogeneous distribution in space and time. There is a clear need to document this variability at regional scale through observations involving, in particular, the in situ near-surface segment of the atmospheric observation system. This paper will provide the widest effort so far to document variability of climate-relevant in situ aerosol properties (namely wavelength dependent particle light scattering and absorption coefficients, particle number concentration and particle number size distribution) from all sites connected to the Global Atmosphere Watch network. High-quality data from almost 90 stations worldwide have been collected and controlled for quality and are reported for a reference year in 2017, providing a very extended and robust view of the variability of these variables worldwide. The range of variability observed worldwide for light scattering and absorption coefficients, single-scattering albedo, and particle number concentration are presented together with preliminary information on their long-term trends and comparison with model simulation for the different stations. The scope of the present paper is also to provide the necessary suite of information, including data provision procedures, quality control and analysis, data policy, and usage of the ground-based aerosol measurement network. It delivers to users of the World Data Centre on Aerosol, the required confidence in data products in the form of a fully characterized value chain, including uncertainty estimation and requirements for contributing to the global climate monitoring system. 〈/jats:p〉
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , NonPeerReviewed
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Journal of Applied Physics 87 (2000), S. 4591-4593 
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: The sulfur passivation of an n-GaN surface was investigated by employing an aqueous (NH4)2S solution and (NH4)2S+t-C4H9OH solution. Photoluminescence and Auger electron spectroscopy revealed that treatment with (NH4)2S+t-C4H9OH results in a more effective passivation of the n-GaN surface than that with (NH4)2S due to a higher chemical reactivity of sulfur species in the former solution. The (NH4)2S+t-C4H9OH-treated sample shows a stronger photoluminescence intensity by a factor of 2.5 with respect to an untreated sample. In addition, improved Ohmic characteristics of the sample are evident from current–voltage measurements. This result can be attributed to the effective removal of an insulating layer on the n-GaN surface. © 2000 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Journal of Applied Physics 87 (2000), S. 4464-4466 
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: The fabrication and characterization of an InGaN/GaN multiple quantum well light-emitting diode (LED) with a highly transparent Pt thin film as a current spreading layer are described. The room temperature electroluminescence exhibits a strong emission at 453 nm. Pt-contacted LEDs show good electrical properties and high light-output efficiency compared to Ni/Au-contacted ones. The light transmittance and the specific contact resistance of a Pt thin film with a thickness of 8 nm on p-GaN was determined to be 85% at 450 nm and 9.12×10−3 Ω cm2, demonstrating that a Pt thin film can be used as an effective current spreading layer with high light transparency. © 2000 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Journal of Applied Physics 87 (2000), S. 7667-7670 
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: We report on etch-induced damage in n-type GaN caused by an inductively coupled plasma, and damage recovery by means of treatment with an N2 plasma. As the plasma dc bias was increased by increasing the rf table power during etching, the optical and electrical properties of the etched GaN films deteriorated as the result of etch-induced damage. However, an N2 plasma treatment for the etched samples effectively removed the etch-induced defects and damage on the surface, leading to improved surface morphology, photoluminescence, and ohmic contact in n-type GaN. © 2000 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    Woodbury, NY : American Institute of Physics (AIP)
    Applied Physics Letters 78 (2001), S. 1942-1944 
    ISSN: 1077-3118
    Source: AIP Digital Archive
    Topics: Physics
    Notes: The effects of an alcohol-based (NH4)2S solution [t-C4H9OH+(NH4)2S] treatment on Pt Ohmic contacts to p-type GaN are presented. The specific contact resistance decreased by three orders of magnitude from 2.56×10−2 to 4.71×10−5 Ω cm2 as a result of surface treatment using an alcohol-based (NH4)2S solution compared to that of the untreated sample. The O 1s and Pt 4f core-level peaks in the x-ray photoemission spectra showed that the alcohol-based (NH4)2S treatment was effective in removing of the surface oxide layer. Compared to the untreated sample, the alcohol-based (NH4)2S-treated sample showed a Ga 2p core-level peak which was shifted toward the valence-band edge by 0.25 eV, indicating that the surface Fermi level was shifted toward the valence-band edge. These results suggest that the surface barrier height for hole injection from Pt metal to p-type GaN can be lowered by the surface treatment, thus resulting in a drastic reduction in specific contact resistance. © 2001 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    Woodbury, NY : American Institute of Physics (AIP)
    Applied Physics Letters 77 (2000), S. 1903-1904 
    ISSN: 1077-3118
    Source: AIP Digital Archive
    Topics: Physics
    Notes: The characteristics of the GaN/InGaN multiquantum-well light-emitting diode (LED) have been examined from the view point of uniform current spreading. By means of simple modeling, it was found that the current density and the length of the lateral current path through the transparent layer represent dominant parameters in determining uniform current spreading. In this regard, we studied the effect of current density on the reliability characteristics of the LED. We were able to significantly improve the electrical, optical, and reliability characteristics of the LED in terms of reducing the length of the lateral current path through the transparent layer. © 2000 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    Woodbury, NY : American Institute of Physics (AIP)
    Applied Physics Letters 78 (2001), S. 1766-1768 
    ISSN: 1077-3118
    Source: AIP Digital Archive
    Topics: Physics
    Notes: The results of the sulfur treatment of multiple-quantum-well (MQW) light-emitting diodes (LEDs) with (NH4)2S and (NH4)2S+t-C4H9OH solutions prior to the deposition of a light-transmitting p-electrode metal are presented. The room-temperature I–V curves showed that the forward voltages of MQW LEDs treated with the two sulfur solutions decrease by 0.12 and 0.35 V at 20 mA, respectively, compared to the untreated MQW LED, as the result of an improvement in p-Ohmic contact characteristics. The relative light-output power and external quantum efficiency of MQW LEDs increased by a factor of 1.28 for the (NH4)2S treated sample and 2.23 for the (NH4)2S+t-C4H9OH treated sample compared to the untreated sample. In addition, the reverse leakage current characteristic of MQW LEDs was reduced as a result of sulfur treatment. This can be attributed to the passivation of surface and sidewall damages formed after the dry-etching process for a reliable pattern transfer. The present results indicate that the sulfur treatment greatly improves the electrical and optical performance of MQW LEDs. © 2001 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...