GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1749-6632
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Natural Sciences in General
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-0533
    Keywords: Key words Cerebral aneurysm ; Immunohistology ; In situ hybridization ; Smooth muscle cells ; Collagen types I ; III ; VI
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract To investigate the role of collagens in the formation and rupture of cerebral aneurysms, we examined the distribution and synthesis of vascular collagens in the wall of normal human cerebral main trunks and of cerebral aneurysms using immunohistochemistry and in situ hybridization techniques. Fifteen cerebral aneurysmal walls were resected at operation; control cerebral main trunks were obtained from seven autopsy cases. Semiserial sections from the specimens were subjected to immunofluorescence and immunohistochemical staining with antibodies to collagen types I, III, IV, V, VI, desmin and α-smooth muscle actin. In addition, type III collagen mRNA was examined by in situ hybridization. Immunohistochemical study showed that all collagen types were grossly preserved in the aneurysmal wall, although the distribution patterns were different for each collagen. The distribution of major fibrillar collagen types I and III was more diffuse and homogeneous in the luminal layer of the aneurysmal wall than the media of the control artery, although the intensity of immunohistochemical staining was weaker in the abluminal layer of the aneurysmal wall than the adventitia of the control artery. Collagen types IV and V were distributed more sparsely in the luminal layer of the aneurysmal wall than the media of the control artery. Collagen type VI was noted in the luminal as well as the abluminal layer of the aneurysmal wall, whereas it was located exclusively in the adventitia of the control artery. In situ hybridization showed that the signal for collagen type III mRNA on fibroblastic and smooth muscle cells was higher in the aneurysmal walls than the control arteries, suggesting up-regulation of type III collagen transcription in the cerebral aneurysmal wall. The study of the distribution and synthetic regulation of various types of collagen in the aneurysmal wall may be essential for understanding the formation of the aneurysmal wall and its protection against enlargement or rupture.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1432-0878
    Keywords: Key words Acute lung injury ; Bleomycin ; CCAAT enhancer binding protein ; Lipopolysaccharide ; Wound healing ; Rat (F 344)
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Abstract  Although alveolar reorganization after acute lung injury depends on regeneration of alveolar epithelial cells, there is little knowledge of regulation of pulmonary healing process. Transcription factors may play key roles in this regulation. To investigate whether the CCAAT enhancer binding protein (C/EBP) family, α, β, and δ, were involved in alveolar reorganization after injury, we examined expression of C/EBP proteins and mRNAs in lung injuries induced by lipopolysaccharide (LPS) or bleomycin (Bleo) and in cell proliferation by keratinocyte growth factor (KGF). By immunohistochemistry, we demonstrated that C/EBPα and C/EBPβ were expressed in alveolar type II cells and alveolar macrophages, but C/EBPδ was expressed restrictedly in some of alveolar type II cells in a spatial pattern in the control lungs. Further, these three C/EBP family members were differentially expressed in alveolar cell proliferation and in acute lung injury, in which, interestingly, C/EBPα and C/EBPδ were reciprocally expressed in alveolar type II cell proliferation and in pulmonary fibrosis. However, expressions of their mRNAs by in situ hybridization were dramatically increased in the affected lesions of the lungs by LPS and Bleo, and Northern blot analysis showed an increased abundance of the mRNA for C/EBPβ in LPS-treated lungs and for C/EBPδ in Bleo-treated lungs, compared with those in the control lungs. Thus, differential expression of the C/EBP family may be required to maintain and reorganize the basic integrity of alveolar structure during pathological states, which suggests an important role for the C/EBP family in maintaining normal alveolar architecture and function and in repairing the damaged epithelium after injury.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1573-6865
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Summary Collagen types II and X mRNAs have been demonstrated simultaneously in newly formed hypertrophic chondrocytes of embryonic chick vertebral cartilage using a double-fluorescence in situ hybridization technique. Digoxigenin- and biotin-labelled type-specific collagen II and X cDNA probes were used. In the embryonic chick vertebra at stage 45, two different fluorescence signals (Fluorescein isothiocyanate and Rhodamine) - one for collagen type II mRNA, the other for type X mRNA - showed differential distribution of the two collagen mRNAs in the proliferating and hypertrophic chondrocyte zones. Several layers of newly formed hypertrophic chondrocytes expressing both collagen types II and X genes were identified in the same section as two different fluorescent colour signals. Low levels of fluorescent signals for collagen type II mRNA were also detected in the hypertrophic chondrocyte zone. Cytological identification of maturing chondrocyte phenotypes, expressing collagen mRNAs, is easier in sections processed by non-radioactive in situ hybridization than in those subjected to radioactive in situ hybridization using 3H-labelled cDNA probes. This study demonstrates that double-fluorescence in situ hybridization is a useful tool for simultaneously detecting the expression of two collagen genes in the same chondrocyte population.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1573-6865
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Abstract Type IV collagen, the major component of basement membrane, consists primarily of α1(IV) and α2(IV) chains. Recently, other types of collagen IV chains, i.e. α3(IV), α4(IV), α5(IV) and α6(IV) chains, have been identified by protein chemistry and molecular cloning. We have examined the diversity of the assembly of α(IV) chains of the basement membrane surrounding tumour nests of basal cell carcinomas, in tissues from 11 patients, by immunohistochemical analysis using specific monoclonal antibodies to six α(IV) chain. The immunostaining profile of each chain differed with respect to the histological subtypes of basal cell carcinoma. In the morphea-like subtype, which was more invasive, α1(IV) and α2(IV) chains were discontinuously stained, and α5(IV) and α6(IV) chains were entirely absent. However, in the superficial subtype, which was non-aggressive, α1(IV), α2(IV), α5(IV) and α6(IV) chains were well stained compared with the other subtypes of basal cell carcinoma. In addition, in the solid subtype, which showed slow growth and ulceration, α1(IV) and α2(IV) chains were continuously stained, and α5(IV) and α6(IV) chains were discontinuous or absent. The assembly of α5(IV) and α6(IV) chains into the basement membrane was inhibited in the solid and morphea subtypes of BCC. This differential expression of type IV collagen chains seems to be associated with the invasive potential of basal cell carcinoma
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 1573-6865
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Abstract Arginine is a precursor for the synthesis of urea, polyamines, creatine phosphate, nitric oxide and proteins. It is synthesized from ornithine by argininosuccinate synthetase and argininosuccinate lyase and is degraded by arginase, which consists of a liver-type (arginase I) and a non-hepatic type (arginase II). Recently, cDNAs for human and rat arginase II have been isolated. In this study, immunocytochemical analysis showed that human arginase II expressed in COS-7 cells was localized in the mitochondria. Arginase II mRNA was abundant in the rat small intestine and kidney. In the kidney, argininosuccinate synthetase and lyase were immunostained in the cortex, intensely in proximal tubules and much less intensely in distal tubules. In contrast, arginase II was stained intensely in the outer stripes of the outer medulla, presumably in the proximal straight tubules, and in a subpopulation of the proximal tubules in the cortex. Immunostaining of serial sections of the kidney showed that argininosuccinate synthetase and arginase II were collocalized in a subpopulation of proximal tubules in the cortex, whereas only the synthetase, but not arginase II, was present in another subpopulation of proximal tubules. In the liver, all the enzymes of the urea cycle, i.e. carbamylphosphate synthetase I, ornithine transcarbamylase, argininosuccinate synthetase and lyase and arginase I, showed similar zonation patterns with staining more intense in periportal hepatocytes than in pericentral hepatocytes, although zonation of ornithine transcarbamylase was much less prominent. The implications of these results are discussed.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    ISSN: 0003-276X
    Keywords: Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine
    Notes: We examined the spatio-temporal pattern of type X collagen mRNA and its protein in the embryonic chick vertebrae undergoing ossification by in situ hybridization and immunohistochemistry. Hypertrophic chondrocytes, producing type X collagen, were developed as islands of cells in a few vertebral body segments of stage 36 embryos. These cells were increased in number at stages 37 and 38 and they expressed high levels of type X collagen mRNA and deposited its protein in the matrix. Blood vessels entered from the perichondrium at stage 37 and invaded deeply into hypertrophic cartilage at stage 38. As the vertebrae grew further at stage 40, the leading front of active hypertrophic chondrocytes with high levels of type X mRNA shifted from the midvertebral perivascular area towards intervertebral borders, while the perivascular area retained a number of inactive hypertrophic chondrocytes with low levels of type X mRNA. Type X collagen was found in large amounts throughout the matrix areas containing both active and inactive hypertrophic chondrocytes. Calcium was detected by von Kossa's technique in hypertrophic cartilage matrix in a small amount at stage 37, in parts of the matrix with type X collagen deposition in succeeding stages, and finally in almost the entire area of type X collagen deposition at stage 45. The vertebral segments of stage 45 embryos also showed a clearly reversed pattern of expression between type X collagen mRNA and types II and IX collagen mRNAs. The results demonstrate that the production of type X collagen by hypertrophic chondrocytes precedes both vascular invasion and mineralization of the matrix, suggesting that hypertrophic chondrocytes have an important role in regulating these events.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    ISSN: 1058-8388
    Keywords: Type XI collagen ; Extracellular matrix ; Gene expression ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine
    Notes: Fibrillar networks are intimately involved in several morphogenetic processes which underlie the harmonious development of the vertebrate embryo. Recent genetic evidence has demonstrated that the minor types V and XI collagen are key regulators of types I and II fibrillogenesis in non-cartilaginous and cartilaginous matrices, respectively. A comprehensive understanding of the expression and regulation of the genes coding for the chains of the minor collagen types is therefore relevant to animal morphogenesis and development. The present study was undertaken to elucidate the embryonic pattern of expression of the gene coding for the mouse α1 chain of type XI colagen (Col11α1) using the technique of in situ hybridization. Transcripts of the Col11α1 gene were detected as early as 11 days of gestation. The α1(XI) transcripts were found to accumulate mostly in cartilaginous tissues, such as the chondrocranium and the developing limbs. Like the major cartilage-specific collagen (type II), Col11α1 expression was also noted in the neuro-epithelium of the brain. However, α1(XI) transcripts accumulated in several other non-cartilaginous sites. They include odontoblasts, trabecular bones, atrioventricular valve of the heart, the tongue, the intestine, and the otic vesicle. Altogether, the data confirm that Col11α1 has a broader spectrum of expression than previously thought. This finding raises the possibility that the α1(XI) chain may participate in the formation of stage- and tissue-specific trimers with distinct functional properties. © 1995 wiley-Liss, Inc.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    ISSN: 0002-9106
    Keywords: Collagen ; Notochord ; Type II ; Type IX ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine
    Notes: The notochord of embryonic chicks produces type IX collagen, as well as type II collagen, prior to the onset of vertebral chondrogenesis. To address the question of whether the notochord secretes the “long-form” type IX collagen found in cartilage or the “short-form” type IX found in the cornea and vitreous humor, we examined immunoreactivity of the notochordal type IX collagen using two different monoclonal antibodies. The antibody 2C2 recognizes an epitope close to the carboxyl-terminus of the HMW fragment, which is present in both the long- and short-form type IX collagens, whereas another antibody 4D6 recognizes an epitope in the NC4 domain of the long-form type IX collagen, which is absent in the short-form type IX collagen. Therefore, the long-form is recognized by its reaction with both 2C2 and 4D6, while the short-form by its reaction with only 2C2 and no reaction with 4D6. Immunostaining of vertebral sections with 2C2 shows an identical distribution of staining with that for type II collagen, although the staining with 2C2 is less intense. The 2C2-reactive type IX collagen is found within the notochord at stage 14 and in the notochordal sheath at stage 20. Deposition of this collagen in the perinotochordal matrix increases with time and reaches a level comparable with that for type II at stage 31. In contrast, the 4D6-reactive type IX collagen is not found within the notochord nor in the notochordal sheath. The collagen becomes detectable, however, in the perinotochordal matrix at stages 27 to 28 and is markedly increased at stage 29, reaching the levels for the 2C2-reactive type IX at stage 31. A highly sensitive immuno-dot blot assay has confirmed that the notochord from chick embryos at stages 19 to 20 produces type IX collagen that reacts with 2C2 but does not react with 4D6. The present study indicates (1) that the short-form type IX collagen is secreted from the notochord and also from the sclerotome cells, and (2) that the switching in the production from the short-form type IX collagen to the long-form type IX occurs during stage 27 and stage 31 when sclerotome cells differentiate into chondrocytes in the developing vertebral body. © 1992 Wiley-Liss, Inc.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...