GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
Publikationsart
Verlag/Herausgeber
Erscheinungszeitraum
  • 1
    Publikationsdatum: 2023-02-08
    Beschreibung: Highlights • Hypocenters within the subducted Explorer plate indicate slab deformation. • The oceanic slab is bending downward toward the northwest. • A complex sequence of focal mechanisms also indicates plate deformation. • Decreased seismic activity in the overriding plate indicates decoupling to the NW. • Deformation and decoupling could limit megathrust rupture propagation. Abstract At the northernmost extent of the Cascadia subduction zone, the Explorer plate subducts at approximately 2 cm/yr, less than half the rate of the Juan de Fuca plate to the south. The boundary between these two plates is known as the Nootka fault zone, which is one of the focuses of the Seafloor Earthquake Array Japan-Canada Cascadia Experiment (SeaJade). During this survey, an 6.4 earthquake occurred on 24 April 2014. This event and the subsequent aftershocks (referred to as the Nootka Sequence) reveal an approximately 40-km-long subducted fault within the Explorer Plate to the north of the Nootka fault zone. We infer that the fault is a subducted conjugate fault because of its nearly identical orientation to those seaward of the subduction front within the Nootka fault zone. The depth distribution and focal mechanisms of the aftershocks indicate significant margin-parallel deformation of the subducting plate. The subduction interface at the Nootka Sequence fault has been deflected downward to the northwest from a depth of approximately 15 – 25 km over a distance of 25 km. We propose two possible scenarios that are modified from previously suggested slab-tear model with induced margin-parallel mantle flow to explain the significant deformation of the young, warm subducting Explorer plate. To the northwest of this change in slab geometry, a lack of seismic activity above the plate interface indicates that the Explorer plate has partially decoupled from the overriding North America plate. We conclude that the geometric variation separating the southern Explorer plate from the north, along with decoupling and a possible intraslab tear, may be a significant combination to resist the propagation of a megathrust rupture across this boundary.
    Materialart: Article , PeerReviewed
    Format: text
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Publikationsdatum: 2024-02-07
    Beschreibung: At the northern Cascadia subduction zone, the subducting Explorer and Juan de Fuca plates interact across a transform deformation zone, known as the Nootka fault zone (NFZ). This study continues the Seafloor Earthquake Array Japan Canada Cascadia Experiment to a second phase (SeaJade II) consisting of nine months of recording of earthquakes using ocean-bottom and land-based seismometers. In addition to mapping the distribution of seismicity, including an M W 6.4 earthquake and aftershocks along the previously unknown Nootka Sequence Fault, we also conducted seismic tomography, which delineates the geometry of the shallow subducting Explorer plate (ExP). We derived hundreds of high-quality focal mechanism solutions from the SeaJade II data. The mechanisms manifest a complex regional tectonic state, with normal faulting of the ExP west of the NFZ, left-lateral strike-slip behaviour of the NFZ, and reverse faulting within the overriding plate above the subducting Juan de Fuca plate. Using data from the combined SeaJade I and II catalogs, we have performed double-difference hypocentre relocations and found seismicity lineations to the southeast of, and oriented 18° clockwise from, the subducted NFZ, which we interpret to represent less active small faults off the primary faults of the NFZ. These lineations are not optimally oriented for shear failure in the regional stress field, which we inferred from averaged focal mechanism solutions, and may represent paleo-configurations of the NFZ. Further, active faults interpreted from seismicity lineations within the subducted plate, including the Nootka Sequence Fault, may have originated as conjugate faults within the paleo-NFZ.
    Materialart: Article , PeerReviewed
    Format: text
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...