GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Schlosser, Christian; Klar, Jessica K; Wake, Bronwyn D; Snow, Joseph T; Honey, David J; Woodward, E Malcolm S; Lohan, Maeve C; Achterberg, Eric Pieter; Moore, C Mark (2013): Seasonal ITCZ migration dynamically controls the location of the (sub)tropical Atlantic biogeochemical divide. Proceedings of the National Academy of Sciences of the United States of America, direct submission, https://doi.org/10.1073/pnas.1318670111
    Publication Date: 2023-07-08
    Description: Inorganic nitrogen depletion restricts productivity in much of the low-latitude oceans, generating a selective advantage for diazotrophic organisms capable of fixing atmospheric dinitrogen (N2). However, the abundance and activity of diazotrophs can in turn be controlled by the availability of other potentially limiting nutrients, including phosphorus (P) and iron (Fe). Here we present high-resolution data (~0.3°) for dissolved iron, aluminum, and inorganic phosphorus that confirm the existence of a sharp north-south biogeochemical boundary in the surface nutrient concentrations of the (sub)tropical Atlantic Ocean. Combining satellite-based precipitation data with results from a previous study, we here demonstrate that wet deposition in the region of the intertropical convergence zone acts as the major dissolved iron source to surface waters. Moreover, corresponding observations of N2 fixation and the distribution of diazotrophic Trichodesmium spp. indicate that movement in the region of elevated dissolved iron as a result of the seasonal migration of the intertropical convergence zone drives a shift in the latitudinal distribution of diazotrophy and corresponding dissolved inorganic phosphorus depletion. These conclusions are consistent with the results of an idealized numerical model of the system. The boundary between the distinct biogeochemical systems of the (sub)tropical Atlantic thus appears to be defined by the diazotrophic response to spatial-temporal variability in external Fe inputs. Consequently, in addition to demonstrating a unique seasonal cycle forced by atmospheric nutrient inputs, we suggest that the underlying biogeochemical mechanisms would likely characterize the response of oligotrophic systems to altered environmental forcing over longer timescales.
    Keywords: Aluminium, dissolved; Aluminium, dissolved, standard deviation; Atlantic; Brown & Bruland (2008); D361; D361-track; DEPTH, water; Discovery (1962); Fish; GEOTRACES; Global marine biogeochemical cycles of trace elements and their isotopes; Iron, dissolved; Iron, dissolved, standard deviation; LATITUDE; LONGITUDE; Obata et al. (1993); Phosphorus, inorganic, dissolved; Zhang & Chi (2002)
    Type: Dataset
    Format: text/tab-separated-values, 1217 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2021-04-21
    Description: Concentrations of heme b, the iron-containing component of b-type hemoproteins, ranged from 〈 0.4 to 5.3 pM with an average of 1.18 ± 0.8 pM (± 1σ; n = 86) in the Iceland Basin (IB), from 〈 0.4 to 19.1 pM with an average of 2.24 ± 1.67 pM (n = 269) in the tropical northeast Atlantic (TNA) and from 0.6 to 21 pM with an average of 5.1 ± 4.8 pM (n = 34) in the Scotia Sea (SS). Heme b concentrations were enhanced in the photic zone and decreased with depth. Heme b concentrations correlated positively with chlorophyll a (chl a) in the TNA (r = 0.41, p 〈 0.01, n = 269). Heme b did not correlate with chl a in the IB or SS. In the IB and SS, stations with high-chlorophyll and low-nutrient (Fe and/or Si) concentrations exhibited low heme b concentrations relative to particulate organic carbon (〈 0.1 μmol mol−1), and high chl a:heme b ratios (〉 500). High chl a:heme b ratios resulted from relative decreases in heme b, suggesting proteins such as cytochrome b6f, the core complex of photosystem II, and eukaryotic nitrate reductase were depleted relative to proteins containing chlorophyll such as the eukaryotic light-harvesting antenna. Relative variations in heme b, particulate organic carbon, and chl a can thus be indicative of a physiological response of the phytoplankton community to the prevailing growth conditions, within the context of large-scale changes in phytoplankton community composition.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2023-02-08
    Description: Heme b is an iron-containing cofactor in hemoproteins that participates in the fundamental processes of photosynthesis and respiration in phytoplankton. Heme b concentrations typically decline in waters with low iron concentrations but due to lack of field data, the distribution of heme b in particulate material in the ocean is poorly constrained. Here we report particulate heme b distributions across the Atlantic Ocean (59.9°N to 34.6°S). Heme b concentrations in surface waters ranged from 0.10 to 33.7 pmol L−1 (median = 1.47 pmol L−1, n = 974) and were highest in regions with a high biomass. The ratio of heme b to particulate organic carbon (POC) exhibited a mean value of 0.44 μmol heme b mol−1 POC. We identified the ratio of 0.10 µmol heme b mol−1 POC as the cut-off between heme b replete and heme b deficient (anemic) phytoplankton. By this definition, we observed anemic phytoplankton populations in the Subtropical South Atlantic and Irminger Basin. Comparison of observed and modelled heme b suggested that heme b could account for between 0.17–9.1% of biogenic iron. Our large scale observations of heme b relative to organic matter provide further evidence of the impact of changes in iron supply on phytoplankton iron status across the Atlantic Ocean.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...