GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Document type
Publisher
Years
  • 1
    Publication Date: 2018-03-12
    Description: Purpose Anesthesia is necessary for most animal studies requiring invasive procedures. It is well documented that various types of anesthesia modulate a wide variety of important metabolic and functional processes in the body, and as such, represent a potential limitation in the study design. In the present study, we aimed to investigate the renal functional and metabolic consequences of 3 typical rodent anesthetics used in preclinical MRI: sevoflurane, inaction, and a mixture of fentanyl, fluanisone, and midazolam (FFM). Methods The renal effects of 3 different classes of anesthetics (inactin, servoflurane, and FFM) were investigated using functional and metabolic MRI. The renal glucose metabolism and hemodynamics was characterized with hyperpolarized [1- 13 C]pyruvate MRI and by DCE imaging. Results Rats receiving sevoflurane or FFM had blood glucose levels that were 1.3-fold to 1.4-fold higher than rats receiving inactin. A 2.9-fold and 4.8-fold increased 13 C-lactate/ 13 C-pyruvate ratio was found in the FFM mixture anesthetized group compared with the sevoflurane and the inactin anesthetized groups. The FFM anesthesia resulted in a 50% lower renal plasma flow compared with the sevoflurane and the inactin anesthetized groups. Conclusion This study demonstrates different renal metabolic and hemodynamic changes under 3 different anesthetics, using hyperpolarized MR in rats. Inactin and sevoflurane were found to affect the renal hemodynamic and metabolic status to a lesser degree than FFM. Sevoflurane anesthesia is particularly easy to induce and maintain during the whole anesthesia procedure, and as such, represents a good alternative to inaction, although it alters the blood glucose level.
    Print ISSN: 0740-3194
    Electronic ISSN: 1522-2594
    Topics: Medicine
    Published by Wiley-Blackwell
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...