GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2022-05-25
    Description: Author Posting. © The Authors, 2006. This is the author's version of the work. It is posted here by permission of Elsevier B.V. for personal use, not for redistribution. The definitive version was published in Marine Chemistry 100 (2006): 213-233, doi:10.1016/j.marchem.2005.10.013.
    Description: Thorium-234 is increasingly used as a tracer of ocean particle flux, primarily as a means to estimate particulate organic carbon export from the surface ocean. This requires determination of both the 234Th activity distribution (in order to calculate 234Th fluxes) and an estimate of the C/234Th ratio on sinking particles, to empirically derive C fluxes. In reviewing C/234Th variability, results obtained using a single sampling method show the most predictable behavior. For example, in most studies that employ in situ pumps to collect size fractionated particles, C/234Th either increases or is relatively invariant with increasing particle size (size classes 〉1 to 100’s μm). Observations also suggest that C/234Th decreases with depth and can vary significantly between regions (highest in blooms of large diatoms and highly productive coastal settings). Comparisons of C fluxes derived from 234Th show good agreement with independent estimates of C flux, including mass balances of C and nutrients over appropriate space and time scales (within factors of 2-3). We recommend sampling for C/234Th from a standard depth of 100 m, or at least one depth below the mixed layer using either large volume size fractionated filtration to capture the rarer large particles, or a sediment trap or other device to collect sinking particles. We also recommend collection of multiple 234Th profiles and C/234Th samples during the course of longer observation periods to better sample temporal variations in both 234Th flux and the characteristic of sinking particles. We are encouraged by new technologies which are optimized to more reliably sample truly settling particles, and expect the utility of this tracer to increase, not just for upper ocean C fluxes but for other elements and processes deeper in the water column.
    Description: Individuals and science efforts discussed herein were supported by many national science programs, including the U.S. National Science Foundation and U.S. Department of Energy. S.F. and J.C.M. acknowledge the support provided to the International Atomic Energy Agency (IAEA) Marine Environment Laboratory by the Government of the Principality of Monaco. T.T. acknowledges support from the Australian Antarctic Science Program. K.B. was supported in part by a WHOI Ocean Life Institute Fellowship.
    Repository Name: Woods Hole Open Access Server
    Type: Preprint
    Format: 640962 bytes
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-25
    Description: © The Author(s), 2015. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Biogeosciences 12 (2015): 4841-4860, doi:10.5194/bg-12-4841-2015.
    Description: Hydrolyzable organic carbon (OC) comprises a significant component of sedimentary particulate matter transferred from land into oceans via rivers. Its abundance and nature are however not well studied in Arctic river systems, and yet may represent an important pool of carbon whose fate remains unclear in the context of mobilization and related processes associated with a changing climate. Here, we examine the molecular composition and source of hydrolyzable compounds isolated from sedimentary particles derived from nine rivers across the pan-Arctic. Bound fatty acids (b-FAs), hydroxy FAs, n-alkane-α,ω-dioic acids (DAs) and phenols were the major components released upon hydrolysis of these sediments. Among them, b-FAs received considerable inputs from bacterial and/or algal sources, whereas ω-hydroxy FAs, mid-chain substituted acids, DAs, and hydrolyzable phenols were mainly derived from cutin and suberin of higher plants. We further compared the distribution and fate of suberin- and cutin-derived compounds with those of other terrestrial biomarkers (plant wax lipids and lignin phenols) from the same Arctic river sedimentary particles and conducted a benchmark assessment of several biomarker-based indicators of OC source and extent of degradation. While suberin-specific biomarkers were positively correlated with plant-derived high-molecular-weight (HMW) FAs, lignin phenols were correlated with cutin-derived compounds. These correlations suggest that, similar to leaf-derived cutin, lignin was mainly derived from litter and surface soil horizons, whereas suberin and HMW FAs incorporated significant inputs from belowground sources (roots and deeper soil). This conclusion is supported by the negative correlation between lignin phenols and the ratio of suberin-to-cutin biomarkers. Furthermore, the molecular composition of investigated biomarkers differed between Eurasian and North American Arctic rivers: while lignin dominated in the terrestrial OC of Eurasian river sediments, hydrolyzable OC represented a much larger fraction in the sedimentary particles from Colville River. Hence, studies exclusively focusing on either plant wax lipids or lignin phenols will not be able to fully unravel the mobilization and fate of bound OC in Arctic rivers. More comprehensive, multi-molecular investigations are needed to better constrain the land–ocean transfer of carbon in the changing Arctic, including further research on the degradation and transfer of both free and bound components in Arctic river sediments.
    Description: X. Feng acknowledges support from the Chinese National Key Development Program for Basic Research (2014CB954003, 2015CB954201). The ISSS program is supported by the Knut and Alice Wallenberg Foundation, headquarters of the Russian Academy of Sciences, the Swedish Research Council, the US National Oceanic and Atmospheric Administration, the Russian Foundation of Basic Research (#13-05-12028, 13-05-12041), the Swedish Polar Research Secretariat and the Nordic Council of Ministers (Arctic Co-Op and TRI-DEFROST programs). Collection of the Mackenzie sediment samples was supported by Fisheries and Oceans Canada and Indian and Northern Affairs Canada as part of the NOGAP B.6 project. Ö. Gustafsson acknowledges an Academy Research Fellow grant from the Swedish Royal Academy of Sciences. I. P. Semiletov and O. V. Dudarev thank the Government of the Russian Federation (#2013-220-04-157) for support as well as A. I. Khanchuk personally. T. I. Eglinton acknowledges support from Swiss National Science foundation (SNF) grant no. 200021_140850, and grants OCE-9907129, OCE-0137005, and OCE-0526268 from the US National Science Foundation (NSF), the Stanley Watson Chair for Excellence in Oceanography, and ETH Zurich. J. E. Vonk is thankful for support from NWO Rubicon (#825.10.022) and Veni (#863.12.004). B. E. van Dongen is thankful for support from the UK NERC (NE/I024798/1). R. M. Holmes acknowledges support from NSF 0436118, NSF 0732555, and NSF 1107774. X. Feng thanks WHOI for a postdoctoral scholar fellowship and for postdoctoral support from ETH Zurich.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2015. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Global Biogeochemical Cycles 29 (2015): 1855–1873, doi:10.1002/2015GB005204.
    Description: Distinguishing the sources, ages, and fate of various terrestrial organic carbon (OC) pools mobilized from heterogeneous Arctic landscapes is key to assessing climatic impacts on the fluvial release of carbon from permafrost. Through molecular 14C measurements, including novel analyses of suberin- and/or cutin-derived diacids (DAs) and hydroxy fatty acids (FAs), we compared the radiocarbon characteristics of a comprehensive suite of terrestrial markers (including plant wax lipids, cutin, suberin, lignin, and hydroxy phenols) in the sedimentary particles from nine major arctic and subarctic rivers in order to establish a benchmark assessment of the mobilization patterns of terrestrial OC pools across the pan-Arctic. Terrestrial lipids, including suberin-derived longer-chain DAs (C24,26,28), plant wax FAs (C24,26,28), and n-alkanes (C27,29,31), incorporated significant inputs of aged carbon, presumably from deeper soil horizons. Mobilization and translocation of these “old” terrestrial carbon components was dependent on nonlinear processes associated with permafrost distributions. By contrast, shorter-chain (C16,18) DAs and lignin phenols (as well as hydroxy phenols in rivers outside eastern Eurasian Arctic) were much more enriched in 14C, suggesting incorporation of relatively young carbon supplied by runoff processes from recent vegetation debris and surface layers. Furthermore, the radiocarbon content of terrestrial markers is heavily influenced by specific OC sources and degradation status. Overall, multitracer molecular 14C analysis sheds new light on the mobilization of terrestrial OC from arctic watersheds. Our findings of distinct ages for various terrestrial carbon components may aid in elucidating fate of different terrestrial OC pools in the face of increasing arctic permafrost thaw.
    Description: Chinese National Key Development Program for Basic Research Grant Numbers: 2014CB954003, 2015CB954201; Knut and Alice Wallenberg Foundation; Headquarters of the Russian Academy of Sciences; Swedish Research Council; US National Oceanic and Atmospheric Administration; Russian Foundation of Basic Research Grant Numbers: (13-05-12028, 13-05-12041; Swedish Polar Research Secretariat; Nordic Council of Ministers; Government of the Russian Federation Grant Number: 2013-220-04-157; Swiss National Science foundation. Grant Number: (200021_140850 US National Science Foundation (NSF) Grant Numbers: OCE-9907129, OCE-0137005, OCE-0526268; Stanley Watson Chair for Excellence in Oceanography Grant Number: 825.10.022; ETH Zürich; NWO Rubicon; Veni Grant Number: 863.12.004; UK NERC Grant Number: NE/I024798/1; NSF. Grant Numbers: 0436118, 0732555, 1107774
    Description: 2016-05-02
    Keywords: Compound-specific radiocarbon analysis ; Terrestrial carbon markers ; Pan-arctic rivers ; Diacids ; Lignin ; Plant wax lipids
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-05-25
    Description: © The Authors, 2010. This article is distributed under the terms of the Creative Commons Attribution 3.0 License. The definitive version was published in Biogeosciences 7 (2010): 3153-3166, doi:10.5194/bg-7-3153-2010.
    Description: Climate warming in northeastern Siberia may induce thaw-mobilization of the organic carbon (OC) now held in permafrost. This study investigated the composition of terrestrial OC exported to Arctic coastal waters to both obtain a natural integration of terrestrial permafrost OC release and to further understand the fate of released carbon in the extensive Siberian Shelf Seas. Application of a variety of elemental, molecular and isotopic (δ13C and Δ14C) analyses of both surface water suspended particulate matter and underlying surface sediments along a 500 km transect from Kolyma River mouth to the mid-shelf of the East Siberian Sea yielded information on the sources, degradation status and transport processes of thaw-mobilized soil OC. A three end-member dual-carbon-isotopic mixing model was applied to deduce the relative contributions from riverine, coastal erosion and marine sources. The mixing model was solved numerically using Monte Carlo simulations to obtain a fair representation of the uncertainties of both end-member composition and the end results. Riverine OC contributions to sediment OC decrease with increasing distance offshore (35±15 to 13±9%), whereas coastal erosion OC exhibits a constantly high contribution (51±11 to 60±12%) and marine OC increases offshore (9±7 to 36±10%). We attribute the remarkably strong imprint of OC from coastal erosion, extending up to ~500 km from the coast, to efficient offshoreward transport in these shallow waters presumably through both the benthic boundary layer and ice-rafting. There are also indications of simultaneous selective preservation of erosion OC compared to riverine OC. Molecular degradation proxies and radiocarbon contents indicated a degraded but young (Δ14C ca. −60‰ or ca. 500 14C years) terrestrial OC pool in surface water particulate matter, underlain by a less degraded but old (Δ14C ca. −500‰ or ca. 5500 14C years) terrestrial OC pool in bottom sediments. We suggest that the terrestrial OC fraction in surface water particulate matter is mainly derived from surface soil and recent vegetation fluvially released as buoyant organic-rich aggregates (e.g., humics), which are subjected to extensive processing during coastal transport. In contrast, terrestrial OC in the underlying sediments is postulated to originate predominantly from erosion of mineral-rich Pleistocene coasts (i.e., yedoma) and inland mineral soils. Sorptive association of this organic matter with mineral particles protects the OC from remineralization and also promotes rapid settling (ballasting) of the OC. Our findings corroborate recent studies by indicating that different Arctic surface soil OC pools exhibit distinguishing susceptibilities to degradation in coastal waters. Consequently, the general postulation of a positive feedback to global warming from degradation of permafrost carbon may be both attenuated (by reburial of one portion) and geographically displaced (degradation of released terrestrial permafrost OC far out over the Arctic shelf seas).
    Description: The ISSS-08 program was supported by the Knut and Alice Wallenberg Foundation, Headquarters of the Far Eastern Branch of the Russian Academy of Sciences, the Swedish Research Council (VR Contract No. 621-2004-4039 and 621-2007-4631), the US National Oceanic and Atmospheric Administration (Siberian Shelf Study), the Russian Foundation of Basic Research (08-05-13572, 08-05-00191-a, and 07-05-00050a), the Swedish Polar Research Secretariat, the Arctic Co-Op Program of the Nordic Council of Ministers (331080-70219) and the National Science Foundation (OPP ARC 0909546). O¨ . G. also acknowledges financial support as an Academy Research Fellow from the Swedish Royal Academy of Sciences, L. S. a Marie Curie grant (contract no. PIEF-GA-2008-220424), T. E. an NSF grant (ARC-0909377) and A. A. support from the Knut and Alice Wallenberg Foundation.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-05-26
    Description: Author Posting. © Sears Foundation for Marine Research, 2007. This article is posted here by permission of Sears Foundation for Marine Research for personal use, not for redistribution. The definitive version was published in Journal of Marine Research 65 (2007): 345–416, doi: 10.1357/002224007781567621
    Description: This review provides an assessment of sediment trap accuracy issues by gathering data to address trap hydrodynamics, the problem of zooplankton "swimmers," and the solubilization of material after collection. For each topic, the problem is identified, its magnitude and causes reviewed using selected examples, and an update on methods to correct for the potential bias or minimize the problem using new technologies is presented. To minimize hydrodynamic biases due to flow over the trap mouth, the use of neutrally buoyant sediment traps is encouraged. The influence of swimmers is best minimized using traps that limit zooplankton access to the sample collection chamber. New data on the impact of different swimmer removal protocols at the US time-series sites HOT and BATS are compared and shown to be important. Recent data on solubilization are compiled and assessed suggesting selective losses from sinking particles to the trap supernatant after collection, which may alter both fluxes and ratios of elements in long term and typically deeper trap deployments. Different methods are needed to assess shallow and short- term trap solubilization effects, but thus far new incubation experiments suggest these impacts to be small for most elements. A discussion of trap calibration methods reviews independent assessments of flux, including elemental budgets, particle abundance and flux modeling, and emphasizes the utility of U-Th radionuclide calibration methods.
    Description: WG meetings and production of this report was partially supported by the U.S. National Science Foundation via grants to the SCOR. Individuals and science efforts discussed herein were supported by many national science programs, including the U.S. National Science Foundation, Swedish Research Council, the International Atomic Energy Agency through its support of the Marine Environmental Laboratory that also receives support from the Government of the Principality of Monaco, and the Australian Antarctic Science Program. K.B. was supported in part by a WHOI Ocean Life Institute Fellowship.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2022-05-26
    Description: Author Posting. © The Author(s), 2013. This is the author's version of the work. It is posted here by permission of National Academy of Sciences for personal use, not for redistribution. The definitive version was published in Proceedings of the National Academy of Sciences of the United States of America 110 (2013): 14168–14173, doi:10.1073/pnas.1307031110.
    Description: Mobilization of Arctic permafrost carbon is expected to increase with warming-induced thawing. However, this effect is challenging to assess due to the diverse processes controlling the release of various organic carbon (OC) pools from heterogeneous Arctic landscapes. Here, by radiocarbon dating various terrestrial OC components in fluvially- and coastally-integrated estuarine sediments, we present a unique framework for deconvoluting the contrasting mobilization mechanisms of surface versus deep (permafrost) carbon pools across the climosequence of the Eurasian Arctic. Vascular-plant-derived lignin phenol 14C contents reveal significant inputs of young carbon from surface sources whose delivery is dominantly controlled by river runoff. In contrast, plant wax lipids predominantly trace ancient (permafrost) OC that is preferentially mobilized from discontinuous permafrost regions where hydrological conduits penetrate deeper into soils and thermokarst erosion occurs more frequently. As river runoff has significantly increased across the Eurasian Arctic in recent decades, we estimate from an isotopic mixing model that, in tandem with an increased transfer of young surface carbon, the proportion of mobilized terrestrial OC accounted for by ancient carbon has increased by 3-6% between 1985-2004. These findings suggest that, while partly masked by surface-carbon export, climate-change-induced mobilization of old permafrost carbon is well under way in the Arctic.
    Description: The ISSS program is supported by the Knut and Alice Wallenberg Foundation, the Far Eastern Branch of the Russian Academy of Sciences, the Swedish Research Council, the US National Oceanic and Atmospheric Administration, the Russian Foundation of Basic Research, the Swedish Polar Research Secretariat and the Nordic Council of Ministers (Arctic Co-Op and TRI-DEFROST programs). Ö.G. acknowledges an Academy Research Fellow grant from the Swedish Royal Academy of Sciences. Grants OCE-9907129, OCE-0137005, and OCE-0526268 from the US National Science Foundation (NSF), the Stanley Watson Chair for Excellence in Oceanography (to T.I.E.) and ETH Zürich enabled this research. J.E.V. thanks support from NWO-Rubicon (#825.10.022). B.E.v.D thanks support from the UK NERC (NE/I024798/1). X.F. thanks WHOI for a postdoctoral scholar fellowship and for postdoctoral support from ETH Zürich.
    Description: 2014-01-01
    Keywords: Fluvial mobilization ; Compound-specific 14C ; Hydrogeographic control
    Repository Name: Woods Hole Open Access Server
    Type: Preprint
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2022-05-26
    Description: Author Posting. © The Authors, 2005. This is the author's version of the work. It is posted here by permission of Elsevier B.V. for personal use, not for redistribution. The definitive version was published in Marine Chemistry 100 (2006): 190-212, doi:10.1016/j.marchem.2005.10.012.
    Description: The short-lived thorium isotope 234Th (half-life 24.1 days) has been used as a tracer for a variety of transport processes in aquatic systems. Its use as a tracer of oceanic export via sinking particles has stimulated a rapidly increasing number of studies that require analyses of 234Th in both marine and freshwater systems. The original 234Th method is labour intensive. Thus, there has been a quest for simpler techniques that require smaller sample volumes. Here, we review current methodologies in the collection and analysis of 234Th from the water column, discuss their individual strengths and weaknesses, and provide an outlook on possible further improvements and future challenges. Also included in this review are recommendations on calibration procedures and the production of standard reference materials as well as a flow chart designed to help researchers find the most appropriate 234Th analytical technique for a specific aquatic regime and known sampling constraints.
    Description: Individuals and science efforts discussed herein were supported by many national science programs, including the U.S. National Science Foundation and U.S. Department of Energy and the Ministerio de Educación y Ciencia of Spain. The Agency is grateful for the support provided to its Marine Environment Laboratory by the Government of the Principality of Monaco".
    Keywords: Th-234 ; Methodology ; Sampling ; Analytical techniques, ; Export
    Repository Name: Woods Hole Open Access Server
    Type: Preprint
    Format: 327450 bytes
    Format: 289061 bytes
    Format: application/pdf
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...