GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
  • 1
    Publikationsdatum: 2022-05-25
    Beschreibung: Author Posting. © American Geophysical Union, 2016. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Oceans 121 (2016): 4392–4415, doi:10.1002/2016JC011634.
    Beschreibung: A high-resolution (up to 2 km), unstructured-grid, fully coupled Arctic sea ice-ocean Finite-Volume Community Ocean Model (AO-FVCOM) was employed to simulate the flow and transport through the Canadian Arctic Archipelago (CAA) over the period 1978–2013. The model-simulated CAA outflow flux was in reasonable agreement with the flux estimated based on measurements across Davis Strait, Nares Strait, Lancaster Sound, and Jones Sounds. The model was capable of reproducing the observed interannual variability in Davis Strait and Lancaster Sound. The simulated CAA outflow transport was highly correlated with the along-strait and cross-strait sea surface height (SSH) difference. Compared with the wind forcing, the sea level pressure (SLP) played a dominant role in establishing the SSH difference and the correlation of the CAA outflow with the cross-strait SSH difference can be explained by a simple geostrophic balance. The change in the simulated CAA outflow transport through Davis Strait showed a negative correlation with the net flux through Fram Strait. This correlation was related to the variation of the spatial distribution and intensity of the slope current over the Beaufort Sea and Greenland shelves. The different basin-scale surface forcings can increase the model uncertainty in the CAA outflow flux up to 15%. The daily adjustment of the model elevation to the satellite-derived SSH in the North Atlantic region outside Fram Strait could produce a larger North Atlantic inflow through west Svalbard and weaken the outflow from the Arctic Ocean through east Greenland.
    Beschreibung: NSF Grant Numbers: OCE-1203393, PLR-1203643; National Natural Science Foundation of China Grant Number: 41276197; Shanghai Pujiang Program Grant Number: 12PJ1404100; Shanghai Shuguang Program
    Beschreibung: 2016-12-25
    Schlagwort(e): Water transport ; Canadian Arctic Archipelago ; Atmospheric forcing ; Sea surface height
    Repository-Name: Woods Hole Open Access Server
    Materialart: Article
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Publikationsdatum: 2022-05-25
    Beschreibung: Author Posting. © American Geophysical Union, 2011. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 116 (2011): C00D04, doi:10.1029/2010JC006688.
    Beschreibung: A sea ice model was developed by converting the Community Ice Code (CICE) into an unstructured-grid, finite-volume version (named UG-CICE). The governing equations were discretized with flux forms over control volumes in the computational domain configured with nonoverlapped triangular meshes in the horizontal and solved using a second-order accurate finite-volume solver. Implementing UG-CICE into the Arctic Ocean finite-volume community ocean model provides a new unstructured-grid, MPI-parallelized model system to resolve the ice-ocean interaction dynamics that frequently occur over complex irregular coastal geometries and steep bottom slopes. UG-CICE was first validated for three benchmark test problems to ensure its capability of repeating the ice dynamics features found in CICE and then for sea ice simulation in the Arctic Ocean under climatologic forcing conditions. The model-data comparison results demonstrate that UG-CICE is robust enough to simulate the seasonal variability of the sea ice concentration, ice coverage, and ice drifting in the Arctic Ocean and adjacent coastal regions.
    Beschreibung: This work was supported by the NSF Arctic Program for projects with grant numbers of ARC0712903, ARC0732084, and ARC0804029. The Arctic Ocean Model Intercomparison Project (AOMIP) has provided an important guidance for model improvements and ocean studies under coordinated experiments activities. We would like to thank AOMIP PI Proshutinsky for his valuable suggestions and comments on the ice dynamics. His contribution is supported by ARC0800400 and ARC0712848. The development of FVCOM was supported by the Massachusetts Marine Fisheries Institute NOAA grants DOC/NOAA/ NA04NMF4720332 and DOC/NOAA/NA05NMF4721131; the NSF Ocean Science Program for projects of OCE‐0234545, OCE‐0227679, OCE‐ 0606928, OCE‐0712903, OCE‐0726851, and OCE‐0814505; MIT Sea Grant funds (2006‐RC‐103 and 2010‐R/RC‐116); and NOAA NERACOOS Program for the UMASS team. G. Gao was also supported by the Chinese NSF Arctic Ocean grant under contract 40476007. C. Chen’s contribution was also supported by Shanghai Ocean University International Cooperation Program (A‐2302‐10‐0003), the Program of Science and Technology Commission of Shanghai Municipality (09320503700), the Leading Academic Discipline Project of Shanghai Municipal Education Commission (J50702), and Zhi jiang Scholar and 111 project funds of the State Key Laboratory for Estuarine and Coastal Research, East China Normal University (ECNU).
    Schlagwort(e): Arctic Ocean ; Finite-volume ; Sea ice modeling ; Unstructured-grid
    Repository-Name: Woods Hole Open Access Server
    Materialart: Article
    Format: application/pdf
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    Publikationsdatum: 2022-05-26
    Beschreibung: Author Posting. © American Geophysical Union, 2008. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 113 (2008): C02002, doi:10.1029/2006JC003994.
    Beschreibung: Physical mechanisms for the summertime offshore detachment of the Changjiang Diluted Water (CDW) into the East China Sea are examined using the high-resolution, unstructured-grid, Finite-Volume Coastal Ocean Model (FVCOM). The model results suggest that isolated low salinity water lens detected west of Cheju Island can be formed by (1) a large-scale adjustment of the flow field to the Changjiang discharge and (2) the detachment of anticyclonic eddies as a result of baroclinic instability of the CDW front. Adding the Changjiang discharge intensifies the clockwise vorticity of the subsurface current (originating from the Taiwan Warm Current) flowing along the 50-m isobath and thus drives the low-salinity water in the northern coastal area of the Changjiang mouth offshore over a submerged plateau that extends toward Cheju Island. Given a model horizontal resolution of less than 1.0 km, the CDW front becomes baroclinically unstable and forms a chain of anticyclonic and cyclonic eddies. The offshore detachment of anticyclonic eddies can carry the CDW offshore. This process is enhanced under northward winds as a result of the spatially nonuniform interaction of wind-induced Ekman flow and eddy-generated frontal density currents. Characteristics of the model-predicted eddy field are consistent with previous theoretical studies of baroclinic instability of buoyancy-driven coastal density currents and existing satellite imagery. The plume stability is controlled by the horizontal Ekman number. In the Changjiang, this number is much smaller than the criterion suggested by a theoretical analysis.
    Beschreibung: The development of FVCOM is supported by the Massachusetts Fisheries Institute through NOAA grants DOC/ NOAA/NA04NMF4720332 and DOC/NOAA/NA05NMF4721131 and also the U.S. GLOBEC Northwest Atlantic/Georges Bank program through NSF grants OCE-0234545 and OCE-0227679, NOAA grant NA160P2323 and ONR subcontract grant from Woods Hole Oceanographic Institution. P. Ding is supported by the Chinese National Key Basic Research Project grant 2002CB412403. X. Mao is supported by the National Natural Science Foundation of China (NSFC) grant 40576079.
    Schlagwort(e): Unstructured grid model ; Eddies ; River plume baroclinic instability
    Repository-Name: Woods Hole Open Access Server
    Materialart: Article
    Format: application/pdf
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 4
    Publikationsdatum: 2022-05-26
    Beschreibung: Author Posting. © American Geophysical Union, 2009. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 114 (2009): C08017, doi:10.1029/2008JC004941.
    Beschreibung: A spherical coordinate version of the unstructured grid 3-D FVCOM (finite volume coastal ocean model) has been applied to the Arctic Ocean to simulate tides with a horizontal resolution ranging from 1 km in the near-coastal areas to 15 km in the deep ocean. By accurately resolving the irregular coastlines and bathymetry in the Arctic Ocean coastal regions, this model reproduces the diurnal (K1 and O1) and semidiurnal (M2 and S2) tidal wave dynamics and captures the complex tidal structure along the coast, particularly in the narrow straits of the Canadian Archipelago. The simulated tidal parameters (harmonic constituents of sea surface elevation and currents) agree well with the available observational data. High-resolution meshes over the continental shelf and slope capture the detailed spatial structure of topographic trapped shelf waves, which are quite energetic along the Greenland, Siberia, and Spitsbergen continental slope and shelf break areas. Water stratification influences the vertical distribution of tidal currents but not the water transport and thus tidal elevation. The comparison with previous finite difference models suggests that horizontal resolution and geometric fitting are two prerequisites to simulate realistically the tidal energy flux in the Arctic Ocean, particularly in the Canadian Archipelago.
    Beschreibung: This research was supported by the NSF Office of Polar Programs through grants OPP ARC-0712903, ARC- 0732084, and ARC-0804029 for C. Chen, G. Gao, and G. Cowles; OPP ARC-0804010 and ARC-0712848 for A. Proshutinsky; OPP ANT-0523223, ARC0712848, NOAA Cooperative Agreement NA17RJ1223 (409) and the WHOI Smith Chair for R. C. Beardsley. J. Qi was supported by the SMAST fishery program under NOAA grants NA04NMF4720332 and NA05NMF4721131. The spherical coordinate version of FVCOM was developed with initial funds from NSF grants OCE-0606928 and OCE- 0726851. Gao was also supported by the Chinese NSF Arctic Ocean grant under contract 40476007.
    Schlagwort(e): FVCOM ; Arctic Ocean tides ; Intermodel comparisons
    Repository-Name: Woods Hole Open Access Server
    Materialart: Article
    Format: application/pdf
    Format: text/plain
    Format: image/tiff
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 5
    Publikationsdatum: 2022-05-26
    Beschreibung: Author Posting. © American Geophysical Union, 2016. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Oceans 121 (2016): 8320–8350, doi:10.1002/2016JC011841.
    Beschreibung: A high-resolution (up to 2 km), unstructured-grid, fully ice-sea coupled Arctic Ocean Finite-Volume Community Ocean Model (AO-FVCOM) was used to simulate the sea ice in the Arctic over the period 1978–2014. The spatial-varying horizontal model resolution was designed to better resolve both topographic and baroclinic dynamics scales over the Arctic slope and narrow straits. The model-simulated sea ice was in good agreement with available observed sea ice extent, concentration, drift velocity and thickness, not only in seasonal and interannual variability but also in spatial distribution. Compared with six other Arctic Ocean models (ECCO2, GSFC, INMOM, ORCA, NAME, and UW), the AO-FVCOM-simulated ice thickness showed a higher mean correlation coefficient of ∼0.63 and a smaller residual with observations. Model-produced ice drift speed and direction errors varied with wind speed: the speed and direction errors increased and decreased as the wind speed increased, respectively. Efforts were made to examine the influences of parameterizations of air-ice external and ice-water interfacial stresses on the model-produced bias. The ice drift direction was more sensitive to air-ice drag coefficients and turning angles than the ice drift speed. Increasing or decreasing either 10% in water-ice drag coefficient or 10° in water-ice turning angle did not show a significant influence on the ice drift velocity simulation results although the sea ice drift speed was more sensitive to these two parameters than the sea ice drift direction. Using the COARE 4.0-derived parameterization of air-water drag coefficient for wind stress did not significantly influence the ice drift velocity simulation.
    Beschreibung: This work was supported by NSF grants OCE-1203393 for the UMASSD team and PLR-1203643 for R. C. Beardsley.
    Beschreibung: 2017-05-25
    Schlagwort(e): AO-FVCOM ; Sea ice extent ; Sea ice concentration ; Sea ice velocity ; Sea ice thickness
    Repository-Name: Woods Hole Open Access Server
    Materialart: Article
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 6
  • 7
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...