GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing
    Global change biology 10 (2004), S. 0 
    ISSN: 1365-2486
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Notes: We are still lacking in experimental evidence of the effects of climate change on the richness of plant species under field conditions. We report a decrease in the species richness of recruited seedlings in a Mediterranean shrubland in experimentally induced drought and warming over 4 consecutive years. Drought decreased the number of emerging seedlings and their respective species richness. Warming also decreased seedling species richness, but it did not affect the number of emerging seedlings. Species that produce fewer recruits are more likely to disappear in drier or warmer scenarios. However, when the effect of induced climate treatment was greatest, the more abundant species in control stands were not necessarily the ones least affected by treatment; in other words, species-idiosyncratic responses may occur. These results show that demographic processes are sensitive to minor climate changes, with probable consequences on the diversity and structure of the future plant communities.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1399-3054
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: To test the predictions that plants will have a larger flavonoid concentration in a future world with a CO2-enriched atmosphere, wheat (Triticum aestivum L. cv. Yecora Rojo) was grown in a field experiment using FACE (free-air CO2 enrichment) technology under two levels of atmospheric CO2 concentration: ambient (370 μmol mol−1) and enriched (550 μmol mol−1), and under two levels of irrigation: well-watered (100% replacement of potential evapotranspiration) and half-watered. We also studied the effects of CO2 on the concentration of total non-structural carbohydrates (TNC) and nitrogen (N), two parameters hypothesized to be linked to flavonoid metabolism. Throughout the growth cycle the concentration of isoorientin, the most abundant flavonoid, decreased by 62% (from an average of 12.5 mg g−1 on day of year (DOY) 41 to an average of 4.8 mg g−1 on DOY 123), whereas the concentration of tricin, another characteristic flavone, increased by two orders of magnitude (from an average of 0.007 mg g−1 of isoorientin equivalents on DOY 41 to an average of 0.6 mg g−1 of isoorientin equivalents on DOY 123). Although flavonoid concentration was dependent on growth stage, the effects of treatments on phenology did not invalidate the comparisons between treatments. CO2-enriched plants had higher flavonoid concentrations (14% more isoorientin, an average of 7.0 mg g−1 for ambient CO2 vs an average of 8.0 mg g−1 for enriched CO2), higher TNC concentrations and lower N concentrations in ukpper canopy leaves throughout the growth cycle. Well-irrigated plants had higher flavonoid concentrations (11% more isoorientin, an average of 7.1 mg g−1 for half watered vs an average of 7.9 mg g−1 for well-watered) throughout the growth cycle, whereas the effect of irrigation treatments on TNC and N was more variable. These results are in accordance with the hypotheses that higher carbon availability promoted by CO2-enrichment provides carbon that can be invested in carbon-based secondary compounds such as flavonoids. The rise in atmospheric CO2 may thus indirectly affect wheat-pest relations, alter the pathogen predisposition and improve the UV-B protection by changing flavonoid concentrations.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Oxford, UK : Munksgaard International Publishers
    Physiologia plantarum 119 (2003), S. 0 
    ISSN: 1399-3054
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: A new approach was used to experimentally dry and warm a Mediterranean shrubland. By means of automatically sliding curtains, the drought period was extended by excluding rain over the two growing seasons (spring and autumn), and passive warming was created by avoiding infra-red dissipation at night over the whole year. The aim of the study was to test how a future extended drought period and an increase in temperatures could affect the photosynthetic and water use strategies of two co-occurring Mediterranean shrubs, Erica multiflora and Globularia alypum, which are common species of the dry coastal shrublands. The shoot water potential, leaf gas exchange rates and chlorophyll a fluorescence of plants was monitored seasonally during two years (1999–2001). In addition we measured the photosynthetic response curves to light and CO2 in autumn 2001 and the foliar N concentration and leaf C and N stable isotopes in summer 1999 and 2000. Droughted plants of both shrub species showed lower shoot water potentials, transpiration rates and stomatal conductances than control plants, although there was a high seasonal variability. Drought treatment reduced significantly the overall leaf net photosynthetic rates of E. multiflora, but not of G. alypum. Droughted plants of E. multiflora also showed lower leaf net photosynthetic rates in response to light and CO2 and lower carboxylation efficiency than controls, but there was no significant effect of drought on its overall photosystem II (PSII) photochemical efficiency. Although warming treatment did not affect the leaf net photosynthetic rates of the two species overall the study, it increased significantly the carboxylation efficiency and leaf net photosynthetic rates of G. alypum plants in response to CO2 levels in autumn 2001. In addition, warming treatment increased the potential photochemical efficiency of PSII (Fv/Fm) of both species (but especially of G. alypum) at predawn or midday and mainly in autumn and winter. Thus, the results suggest that drier conditions might decrease the annual productivity of these Mediterranean shrubs, particularly of E. multiflora, and that future warming could alleviate the present low temperature constraints of the photosynthetic performance of the two studied species, but especially of G. alypum, during the colder seasons. Ultimately, drier and warmer conditions in the near future may change the competitive relationship among these species in such Mediterranean ecosystems.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    Oecologia 109 (1996), S. 69-73 
    ISSN: 1432-1939
    Keywords: Key words Atmospheric CO2 concentration ; δ15N ; δ13C ; Herbarium specimens ; Nitrogen
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract  Atmospheric CO2 concentration has increased by 25% over the preindustrial level. A parallel increase in C concentration and decreases in N concentration and δ13C of plants grown throughout this century have been observed in plant specimens stored in herbaria. We tested our previous results in a study of 12 more species collected in the western Mediterranean throughout this century (1920–1930, 1945–1955, and 1985–1990) and tree rings of Quercus pubescens from the same area. These changes were accompanied by apparent increases in condensed tannin concentration. A decreasing trend in δ15N both in herbarium material and tree rings was also found, indicating that ecosystems might cope with higher plant N demand by decreasing N losses and increasing N fixation and mineralization. These results may contribute to a better understanding of the effects of global change on carbon and nitrogen cycling.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2024-02-07
    Description: Aim: The aim was to evaluate the effects of climate warming on biodiversity across spatial scales (i.e., alpha-, beta- and gamma-diversity) and the effects of patch openness and experimental context on diversity responses. Location: Global. Time period: 1995-2017. Major taxa studied: Fungi, invertebrates, phytoplankton, plants, seaweed, soil microbes and zooplankton. Methods: We compiled data from warming experiments and conducted a meta-analysis to evaluate the effects of warming on different components of diversity (such as species richness and equivalent numbers) at different spatial scales (alpha-, beta- and gamma-diversity, partitioning beta-diversity into species turnover and nestedness components). We also investigated how these effects were modulated by system openness, defined as the possibility of replicates being colonized by new species, and experimental context (duration, mean temperature change and ecosystem type). Results: Experimental warming did not affect local species richness (alpha-diversity) but decreased effective numbers of species by affecting species dominance. Warming increased species spatial turnover (beta-diversity), although no significant changes were detected at the regional scale (gamma-diversity). Site openness and experimental context did not significantly affect our results, despite significant heterogeneity in the effect sizes of alpha- and beta-diversity. Main conclusions: Our meta-analysis shows that the effects of warming on biodiversity are scale dependent. The local and regional inventory diversity remain unaltered, whereas species composition across temperature gradients and the patterns of species dominance change with temperature, creating novel communities that might be harder to predict.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2022-05-25
    Description: © The Author(s), 2018]. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Global Ecology and Biogeography 27 (2018): 760-786, doi:10.1111/geb.12729.
    Description: The BioTIME database contains raw data on species identities and abundances in ecological assemblages through time. These data enable users to calculate temporal trends in biodiversity within and amongst assemblages using a broad range of metrics. BioTIME is being developed as a community‐led open‐source database of biodiversity time series. Our goal is to accelerate and facilitate quantitative analysis of temporal patterns of biodiversity in the Anthropocene. The database contains 8,777,413 species abundance records, from assemblages consistently sampled for a minimum of 2 years, which need not necessarily be consecutive. In addition, the database contains metadata relating to sampling methodology and contextual information about each record. BioTIME is a global database of 547,161 unique sampling locations spanning the marine, freshwater and terrestrial realms. Grain size varies across datasets from 0.0000000158 km2 (158 cm2) to 100 km2 (1,000,000,000,000 cm2). BioTIME records span from 1874 to 2016. The minimal temporal grain across all datasets in BioTIME is a year. BioTIME includes data from 44,440 species across the plant and animal kingdoms, ranging from plants, plankton and terrestrial invertebrates to small and large vertebrates.
    Description: European Research Council and EU, Grant/Award Number: AdG‐250189, PoC‐727440 and ERC‐SyG‐2013‐610028; Natural Environmental Research Council, Grant/Award Number: NE/L002531/1; National Science Foundation, Grant/Award Number: DEB‐1237733, DEB‐1456729, 9714103, 0632263, 0856516, 1432277, DEB‐9705814, BSR‐8811902, DEB 9411973, DEB 0080538, DEB 0218039, DEB 0620910, DEB 0963447, DEB‐1546686, DEB‐129764, OCE 95‐21184, OCE‐ 0099226, OCE 03‐52343, OCE‐0623874, OCE‐1031061, OCE‐1336206 and DEB‐1354563; National Science Foundation (LTER) , Grant/Award Number: DEB‐1235828, DEB‐1440297, DBI‐0620409, DEB‐9910514, DEB‐1237517, OCE‐0417412, OCE‐1026851, OCE‐1236905, OCE‐1637396, DEB 1440409, DEB‐0832652, DEB‐0936498, DEB‐0620652, DEB‐1234162 and DEB‐0823293; Fundação para a Ciência e Tecnologia, Grant/Award Number: POPH/FSE SFRH/BD/90469/2012, SFRH/BD/84030/2012, PTDC/BIA‐BIC/111184/2009; SFRH/BD/80488/2011 and PD/BD/52597/2014; Ciência sem Fronteiras/CAPES, Grant/Award Number: 1091/13‐1; Instituto Milenio de Oceanografía, Grant/Award Number: IC120019; ARC Centre of Excellence, Grant/Award Number: CE0561432; NSERC Canada; CONICYT/FONDECYT, Grant/Award Number: 1160026, ICM PO5‐002, CONICYT/FONDECYT, 11110351, 1151094, 1070808 and 1130511; RSF, Grant/Award Number: 14‐50‐00029; Gordon and Betty Moore Foundation, Grant/Award Number: GBMF4563; Catalan Government; Marie Curie Individual Fellowship, Grant/Award Number: QLK5‐CT2002‐51518 and MERG‐CT‐2004‐022065; CNPq, Grant/Award Number: 306170/2015‐9, 475434/2010‐2, 403809/2012‐6 and 561897/2010; FAPESP (São Paulo Research Foundation), Grant/Award Number: 2015/10714‐6, 2015/06743‐0, 2008/10049‐9, 2013/50714‐0 and 1999/09635‐0 e 2013/50718‐5; EU CLIMOOR, Grant/Award Number: ENV4‐CT97‐0694; VULCAN, Grant/Award Number: EVK2‐CT‐2000‐00094; Spanish, Grant/Award Number: REN2000‐0278/CCI, REN2001‐003/GLO and CGL2016‐79835‐P; Catalan, Grant/Award Number: AGAUR SGR‐2014‐453 and SGR‐2017‐1005; DFG, Grant/Award Number: 120/10‐2; Polar Continental Shelf Program; CENPES – PETROBRAS; FAPERJ, Grant/Award Number: E‐26/110.114/2013; German Academic Exchange Service; sDiv; iDiv; New Zealand Department of Conservation; Wellcome Trust, Grant/Award Number: 105621/Z/14/Z; Smithsonian Atherton Seidell Fund; Botanic Gardens and Parks Authority; Research Council of Norway; Conselleria de Innovació, Hisenda i Economia; Yukon Government Herschel Island‐Qikiqtaruk Territorial Park; UK Natural Environment Research Council ShrubTundra Grant, Grant/Award Number: NE/M016323/1; IPY; Memorial University; ArcticNet. DOI: 10.13039/50110000027. Netherlands Organization for Scientific Research in the Tropics NWO, grant W84‐194. Ciências sem Fronteiras and Coordenação de Pessoal de Nível Superior (CAPES, Brazil), Grant/Award Number: 1091/13‐1. National Science foundation (LTER), Award Number: OCE‐9982105, OCE‐0620276, OCE‐1232779. FCT ‐ SFRH / BPD / 82259 / 2011. U.S. Fish and Wildlife Service/State Wildlife federal grant number T‐15. Australian Research Council Centre of Excellence for Coral Reef Studies (CE140100020). Australian Research Council Future Fellowship FT110100609. M.B., A.J., K.P., J.S. received financial support from internal funds of University of Lódź. NSF DEB 1353139. Catalan Government fellowships (DURSI): 1998FI‐00596, 2001BEAI200208, MECD Post‐doctoral fellowship EX2002‐0022. National Science Foundation Award OPP‐1440435. FONDECYT 1141037 and FONDAP 15150003 (IDEAL). CNPq Grant 306595‐2014‐1
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2021-08-31
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...