GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Book
    Book
    Amsterdam [u.a.] : Elsevier
    Type of Medium: Book
    Pages: VII, 176 S. , Ill., graph. Darst., Kt.
    Series Statement: Lithos 101.2008,1/2
    Language: English
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    Singapore : Springer Singapore | Singapore : Imprint: Springer
    Keywords: Economic geology. ; Mineral resources. ; Geochemistry. ; Mongolei ; Lagerstättenbildung ; Lagerstättenkunde ; Bleizinkerzlagerstätte ; Seifen-Gold ; Lagerstätte ; Mongolei ; Kupferlagerstätte ; Molybdänlagerstätte ; Chromerzlagerstätte ; Metallogenese ; Vorkommen ; Mongolei ; Eisenlagerstätte ; Goldlagerstätte ; Manganerzlagerstätte ; Platinlagerstätte ; Seltenes Metall ; Mongolei ; Platinmetalle ; Seltenerdmetalllagerstätte ; Silberlagerstätte ; Coltan ; Flussspatlagerstätte ; Mongolei ; Columbit ; Lithiumlagerstätte ; Nioblagerstätte ; Tantallagerstätte ; Kohlenlagerstätte ; Mongolei ; Vanadiumlagerstätte ; Wolframlagerstätte ; Zinnlagerstätte ; Braunkohlenlagerstätte ; Titanlagerstätte ; Mongolei ; Phosphoritlagerstätte ; Bitumenkohlenlagerstätte ; Kritischer Rohstoff ; Mineralischer Rohstoff ; Steinkohlenlagerstätte ; Mongolei ; Uranlagerstätte ; Strategischer Rohstoff
    Description / Table of Contents: 1. Preface (Franco Pirajno) -- 2. Introduction -- 3. Geology of Mongolia: overview (O. Gerel) -- 4. Tectonic settings and related metallogeny of Mongolia (O.Gerel & G. Dejidmaa) -- 5. Description of selected ore deposits and occurrences -- 6. Base metals: Cu, Pb-Zn (Cu-Gerel, Pb-Zn-B. Batkhishig) -- 7. Rare metal deposits: Sn and W (O. Gerel) -- 8. Gold deposits: lodes and placers (G. Dejidmaa) -- 9. Silver deposits (B. Munkhtsengel) -- 10. REE deposits in alkaline and carbonatite complexes (S. Jargalan; Jindrich Kynicky) -- 11. Uranium deposits (D. Bat-Ulzii?) -- 12. Pt and platinoids (А. Altanzul) -- 13. Fe, Cr, Mn (B. Batkhishig) -- 14. Al (bauxites?) –only one occurrence –maybe cancelled -- 15. Coal – B. Batkhishig & L. Jargal) -- 16. Fluorite (Yo. Majigsuren) -- 17. Phosphorite (B. Munkhtsengel) -- 18. Mineral production in Mongolia. .
    Type of Medium: Online Resource
    Pages: 1 Online-Ressource(XII, 461 p. 132 illus., 60 illus. in color.)
    Edition: 1st ed. 2021.
    ISBN: 9789811559433
    Series Statement: Modern Approaches in Solid Earth Sciences 19
    Language: English
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Type of Medium: Book
    Pages: S. 1181-1525 , Ill., graph. Darst., Kt.
    Series Statement: International journal of earth sciences 103.2014,5
    Language: English
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
  • 5
    Online Resource
    Online Resource
    Singapore :Springer Singapore Pte. Limited,
    Keywords: Geology, Economic-Mongolia. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (460 pages)
    Edition: 1st ed.
    ISBN: 9789811559433
    Series Statement: Modern Approaches in Solid Earth Sciences Series ; v.19
    Language: English
    Note: Intro -- Preface -- Acknowledgements -- Contents -- About the Editors -- Chapter 1: Geology and Metallogeny of Mongolia -- 1.1 Introduction -- 1.2 Geology of Mongolia -- 1.2.1 Precambrian Microcontinents -- 1.2.2 Neoproterozoic-Early Paleozoic -- 1.2.3 Middle Paleozoic -- 1.2.4 Late Paleozoic -- 1.2.5 Mesozoic -- 1.2.6 Cenozoic -- 1.3 Metallogeny and Mineral Deposits -- 1.3.1 Neoproterozoic-Early Cambrian Metallogeny -- 1.3.2 Middle Paleozoic Metallogeny -- 1.3.3 Late Paleozoic Metallogeny -- 1.3.4 Mesozoic Metallogeny -- 1.4 Concluding Remarks -- References -- Part I: Metallic Mineral Resources -- Chapter 2: Copper Deposits -- 2.1 Introduction -- 2.2 Copper Deposit Types and Metallogeny -- 2.2.1 Porphyry Deposit Type -- 2.2.2 Cu (Fe, Au, Ag, Mo) Skarn Copper Deposit Type -- 2.2.3 Volcanogenic Cu-Zn Massive Sulfide Deposit Type -- 2.2.4 Basaltic Cu Deposit Type -- 2.2.5 Sediment-Hosted Cu Deposit Type -- 2.3 Description of Selected Deposits -- 2.3.1 Oyu Tolgoi Cluster Deposits -- 2.3.2 Tsagaan Suvarga Deposit -- 2.3.3 Kharmagtai Cu-Au Deposit -- 2.3.4 Kharmagtai 2 Porphyry Cu-Mo (Au, Ag) Deposit -- 2.3.5 Shuteen Cu-(Au) Mineralized Porphyry System -- 2.3.6 Erdenetiin Ovoo Cu-Mo Porphyry Deposit -- 2.3.7 Shand Deposit -- 2.3.8 Saran Uul Deposit -- 2.3.9 Bayan Uul Occurrence -- 2.3.10 Bayan-Airag (Golden Hills) Deposit -- 2.4 Concluding Remarks -- References -- Chapter 3: Lode Gold Deposits -- 3.1 Introduction -- 3.2 Gold Metallogeny -- 3.3 Lode Gold Deposit Types in Mongolia -- 3.3.1 Gold Mineralization Hosted in Metamorphosed Conglomerate -- 3.3.2 Placer Gold Deposits -- 3.3.3 Massive Sulfide Gold Deposits Formed in Association with Seafloor Volcanic Rocks -- 3.3.3.1 Gozgor Gold Occurrence -- 3.3.3.2 Bayan-Airag Gold Occurrence -- 3.3.3.3 Erdenetolgoi Gold Occurrence -- 3.3.4 Epithermal Gold Deposits. , 3.3.4.1 Low Sulfidation Epithermal Gold Deposits -- Jivkheestei Occurrence -- Nirkhruu Occurrence -- 3.3.4.2 High Sulfidation Epithermal Gold Deposits -- 3.3.5 Gold Deposits Hosted in Quartz-Carbonate Vein -- 3.3.6 Gold Deposits Hosted in Quartz and Quartz-Carbonate Veins -- 3.3.6.1 Bumbat Deposit -- 3.3.6.2 Olon-Ovoot Deposit -- 3.3.7 Gold Mineralization in Sulfide-Quartz Veinlet -- 3.3.8 Intrusion-Related Hydrothermal-Metasomatic Gold Deposits -- 3.3.9 Gold Deposits Hosted in Quartz Veins/Stockwork with Metasomatic Alteration -- 3.3.9.1 Boroo Gold Deposit -- 3.3.9.2 Sujigtei Deposit -- 3.3.9.3 Khyargas u (g, u) Occurrence -- 3.3.9.4 Bayan-Uul u (g, b, Zn) Occurrence -- 3.3.9.5 Bor-Undur u (g, s, Sb) Occurrence -- 3.3.9.6 Bayan-Ulz (u, W, Mo) Occurrence -- 3.3.9.7 Delberekh Bulag u (g, b) Occurrence -- 3.3.9.8 Urliin-Ovoo Occurrence -- 3.3.10 Gold Deposits Hosted in Quartz Veins -- 3.3.10.1 Narantolgoi u (g) Deposit -- 3.3.10.2 Ereen u (g, u) Deposit -- 3.3.10.3 Tsagaan Tsakhir Deposit -- 3.3.11 Skarn Gold Deposits -- 3.3.11.1 Khukhbulag u (u) Occurrence -- 3.3.11.2 Buutsagaan u (b, u) Occurrence -- 3.3.11.3 Teshig 1 u (b, u) Occurrence -- 3.3.12 Porphyry Gold Deposits -- 3.3.12.1 Kharmagtai u-u (g) Occurrence -- 3.3.12.2 Avdar Tolgoi u- (u, g, W) Deposit -- 3.3.13 Copper and Iron Massive and Disseminated Sulfide Deposits -- 3.3.13.1 Borts-Uul Deposit -- 3.3.13.2 Bayantsagaan Occurrence -- 3.4 Concluding Remarks -- References -- Chapter 4: Placer Gold Deposits -- 4.1 Geological Setting of Placer Gold Deposits in Mongolia -- 4.2 Origin and Shape Characteristics of Placer Gold Deposits -- 4.3 Main Types of Placer Gold Mineralization -- 4.3.1 Eluvial-Weathering Zone Type -- 4.3.2 Deluvial and Deluvial-Alluvial Placers -- 4.3.3 Proluvial Placers -- 4.3.4 Alluvial Placers -- 4.4 Other Types of Placer Gold Deposits -- 4.4.1 Terrace Placers. , 4.4.2 Glacier and Water-Glacier Type -- 4.4.3 Ancient Placers -- 4.4.4 Gold-Bearing Conglomerate -- 4.5 Distribution of Placer Deposits in Geomorphological Zones in Mongolia -- 4.5.1 Mongol-Altai Gold Mineralization Zone -- 4.5.1.1 Khurimt Group Placer Deposits -- 4.5.1.2 Upper Bulgan Group Gold Placers -- 4.5.2 Bayankhongor Gold Mineralization Zone -- 4.5.3 North Khentii Gold Placers -- 4.5.3.1 Yeroo River District -- 4.5.3.2 Bukhlei District -- 4.5.3.3 Zaamar District -- 4.5.3.4 Tseel District -- 4.5.3.5 Boroo-Zuunmod District -- 4.5.4 South Khentii Gold Mineralization Zone -- 4.5.5 Edren and Altan-Uul (Nemegt Range) Gold Mineralization Zone -- 4.6 Concluding Remarks -- References -- Chapter 5: Rare Metals: Tin, Tungsten, Molybdenum, Lithium, Tantalum, and Niobium Deposits -- 5.1 Introduction -- 5.2 Rare Metal Metallogeny -- 5.2.1 Mongol Altai Metallogenic Belt -- 5.2.2 Central Khentii Metallogenic Belt -- 5.2.3 North Mongolian Metallogenic Belt -- 5.2.4 Central Khangai Metallogenic Belt -- 5.2.5 East Mongolian or South Agiin Belt -- 5.2.6 South Gobi-Khyangan Metallogenic Belt -- 5.3 Description of Selected Sn-W Deposits -- 5.3.1 Sn-W Greisen, Stockworks, and Quartz Veins -- 5.3.1.1 Janchivlan Ore District -- 5.3.1.2 Modot Sn-W Deposit -- 5.3.1.3 Tsagaan Davaa Deposit -- 5.3.1.4 Ikh Khairkhan Ore District -- 5.3.1.5 Ongon Khairkhan Deposit -- 5.3.1.6 Khar Chuluut Deposit -- 5.3.1.7 Kharmorit Deposit -- 5.3.2 W-Mo-Be Greisen, Stockworks, and Quartz Vein Deposits -- 5.3.2.1 Bulagtai Deposit -- 5.3.2.2 Undurtsagaan Deposit -- 5.3.2.3 Salaa Deposit -- 5.3.2.4 Chuluunkhoroot Ore Field -- 5.3.2.5 Yeguzer Ore Field -- 5.3.2.6 The Tov (Center) Deposit -- 5.3.2.7 Uvurbayan Deposit -- 5.3.2.8 Batguai Deposit -- 5.3.2.9 Umnut Deposit -- 5.3.2.10 Umnu Khutul Deposit -- 5.3.2.11 Tumentsogt Ore District -- 5.3.2.12 Baruun Deposit -- 5.3.2.13 Ulaan Uul Ore Field. , 5.3.2.14 Tsunkheg Deposit -- 5.3.2.15 Buraat Uul Occurrence -- 5.3.2.16 Nuuriin Gol Deposit -- 5.3.2.17 Achit Nuur Ore District -- 5.3.2.18 Bodonch Ore Field -- 5.3.2.19 Undur Tsakhir Deposit -- 5.3.2.20 Ikh Nartiin Khiid -- 5.3.2.21 Burentsogt Deposit -- 5.3.2.22 Buyant Deposit -- 5.3.3 Sn Vein/Stockwork Deposits -- 5.3.3.1 Narsan Khundlun Sn Deposit -- 5.3.3.2 Baga Gazar Sn Deposit -- 5.3.4 Placer Sn (+W) Deposits -- 5.3.4.1 Modot Ore District -- 5.3.4.2 Bayanmod Sn-W Placer Deposit -- 5.3.4.3 Khujkhan Sn-W Placer Deposit -- 5.3.4.4 Janchivlan Ore Field -- 5.3.4.5 Elset and Eastern Elset Placer -- 5.3.4.6 Urt Gozgor Placer -- 5.3.4.7 Avdrant Group Placer Deposit -- 5.3.4.8 Upper Onon Group Placers -- 5.3.4.9 Kharmorit Group Placer Deposits -- 5.3.5 W-Mo Skarns -- 5.3.5.1 Mandal Deposit -- 5.3.5.2 Tumentsogt Skarn Occurrence -- 5.3.6 Sn-Polymetallic Skarn Deposit -- 5.3.6.1 Oortsog Ovoo Deposit -- 5.3.7 W Skarns -- 5.3.7.1 Beis Skarn Deposit -- 5.3.8 The W-Sb (Hg) Mineral Systems -- 5.3.8.1 Khovd Gol Deposit -- 5.3.9 Sn-Silicate-Sulfide Vein Deposits -- 5.3.10 Sn-Sulfide Vein Deposit -- 5.4 Description of Selected Mo Deposits and Occurrences -- 5.4.1 Porphyry Mo Deposits -- 5.4.1.1 Tsagaan Chuluut Molybdenum Deposit -- 5.4.1.2 Zuun Mod Molybdenum Deposit -- 5.4.1.3 Zost Uul Porphyry Molybdenum Deposit -- 5.4.1.4 Ariin Nuur Molybdenum Deposit -- 5.5 Description of Selected Be Occurrences -- 5.5.1 Buraat Uul Occurrence -- 5.6 Description of Selected Li Deposits and Occurrences -- 5.6.1 Lithium Pegmatites -- 5.6.1.1 Khukh Del Uul Li-Pegmatites -- 5.6.1.2 Munkhtiin Tsagaan Durvuljin Lithium Deposit -- 5.6.2 Lithium-Fluorine (Li-F) Granites -- 5.6.2.1 Urt Gozgor and Buural Khangai Li-F Granites -- 5.6.3 Li-Ongonite Type -- 5.6.4 Sedimentary-Hosted Lithium Deposit -- 5.6.4.1 The Khukh Del Lithium Deposit -- 5.6.5 Lithium-Bearing Lake Brines. , 5.7 Description of Selected Ta-Nb Occurrences -- 5.7.1 Ta-Bearing Deposit Type -- 5.7.2 Ta-Bearing Li-F Granite Deposit Type -- 5.7.3 Ta-Nb-REE Alkaline Metasomatite Deposit Type -- 5.7.4 Avdrant Peralkaline Granitoid-Related Nb-Zr-REE Deposit Type -- 5.8 Concluding Remarks -- References -- Chapter 6: Rare Earth Mineral Deposits -- 6.1 Introduction -- 6.2 REE Mineral Systems -- 6.2.1 REE in Carbonatites -- 6.2.2 Fe-REE in Carbonatite or Magnetite-Apatite -- 6.2.3 Peralkaline Granite-Related REE (Nb-Zr-REE) -- 6.2.4 REE-Albite Type -- 6.2.5 REE in Albite Nepheline Syenite -- 6.2.6 REE in Pegmatite -- 6.3 Description of REE Deposits and Occurrences -- 6.3.1 REE Carbonatite Deposits -- 6.3.1.1 Mushgai Khudag Deposit -- 6.3.1.2 Khotgor Deposit -- 6.3.1.3 Bayan Khoshuu Occurrence -- 6.3.1.4 Lugiin Gol Deposit -- 6.3.2 Peralkaline Granite-Related REE Deposits -- 6.3.2.1 Khanbogd Alkaline Pluton -- 6.3.3 REE-Nb-Zr Deposits -- 6.3.3.1 Khalzan Buregtei REE-Nb-Zr Deposit -- 6.3.3.2 Ulaan Del Zr-Nb-REE Deposit -- 6.4 Concluding Remarks -- References -- Chapter 7: Lead-Zinc Deposits -- 7.1 Introduction -- 7.2 Metallogeny and Distribution of Polymetallic Deposits in Mongolia -- 7.3 Lead-Zinc Deposit Types -- 7.3.1 Skarn: Contact Metasomatic (Fe-Zn) -- 7.3.1.1 Tumurtiin Ovoo Polymetallic Fe-Zn Skarn Deposit -- 7.3.2 Hydrothermal Vein and Stockwork (Ag-Pb-Zn -- Cu-Pb-Zn) Deposits -- 7.3.2.1 Tsav Polymetallic Pb-Zn Cu (Ag, Au) Deposit -- 7.3.2.2 Dulaankhar Uul Ag-Pb Epithermal Vein Deposit -- 7.3.2.3 Mungun-Undur Sn-Pb-Zn Vein Deposit -- 7.3.2.4 Ulaan Ag-Pb-Zn Deposit -- 7.3.2.5 Mukhar Zn-Pb-Ag-Cu-Cd Deposit -- 7.3.2.6 Uulbayan Zn-Pb Vein Deposit -- 7.3.2.7 Nominy Am Pb-Zn Cu (Ag, Au) Vein and Stockwork Deposit -- 7.3.3 Epithermal Vein (Ag-Pb) -- 7.3.3.1 Khartolgoi Pb-Zn Cu (Ag, Au, As) Vein and Stockwork Deposit. , 7.3.3.2 Kharmorit Pb-Zn Cu (Ag, Au) Vein and Stockwork Deposit.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Springer
    Contributions to mineralogy and petrology 54 (1976), S. 245-254 
    ISSN: 1432-0967
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences
    Notes: Abstract The uranium distribution in spinel peridotite inclusions and their host basalt from Sardinia, Italy, was determined by fission-track mapping. Whole-rock U concentrations range from 14 to 55 ppb. Although the partitioning of U among major silicate phases of the inclusions — olivine, orthopyroxene and clinopyroxene — remains roughly constant, the U content in the minerals is highly variable, e.g. ranging from 27 ppb to 177 ppb in clinopyroxene. The U variation in the minerals shows no apparent correlation with their major element chemistry. Liquid which equilibrated with the assemblages of inclusions with high U content, had U concentrations higher than those found in basaltic rocks. It is suggested that the inclusions were contaminated with a phase strongly enriched in U and subsequently recrystallized. The available data show that spinel peridotite inclusions of basaltic rocks frequently have complex multistage evolution and thus cannot provide a representative picture of the upper mantle radioactivity.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Springer
    Contributions to mineralogy and petrology 66 (1978), S. 409-414 
    ISSN: 1432-0967
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences
    Notes: Abstract The distribution of U has been studied in two metamorphic rock-series with a gradient of regional metamorphism. One series ranges from the lowest greenschist to amphibolite facies and the other one shows increasing metamorphic grade from amphibolite to granulite facies. Several medium and high pressure granulitic inclusions from alkali basalts were also analyzed. The abundances of U in the rocks do not appear to be affected by metamorphism below the granulite facies grade. Granulites are depleted in U in comparison with equivalent rocks of amphibolite facies grade. There are also differences in their U distribution, as the bulk of U in amphibolite facies rocks is located along the fractures and cleavage planes of ferro-magnesian minerals and in U-rich accessories, while in granulites, most of the U resides in accessory minerals. It seems that the depletion of U in granulites is due to a loss of U which is not located in accessory minerals or in the crystal structure of rock-forming minerals and may also be related to a migration of hydrous fluids, perhaps during dehydration.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    Springer
    Contributions to mineralogy and petrology 63 (1977), S. 113-128 
    ISSN: 1432-0967
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences
    Notes: Abstract Mesozoic to Recent volcanic rocks from a transect of the Central Andes between latitudes 26 ° and 28 ° South in northern Chile and Argentina show chemical and temporal zonation with respect to the Peru-Chile trench. Jurassic to Eocene lavas occur closer to the trench and are comparable to calc-alkaline rocks of island arcs. Eastwards they are followed by Miocene to Quaternary sequences of typical continental margin calc-alkaline rocks which have higher contents of K, Rb, Sr, Ba, Zr, and REE and also higher K/Na and La/Yb ratios. The rocks occurring farthest from the trench have shoshonitic affinities. The distribution of major and trace elements is consistent with a model in which magmas were derived by anatexis of an upper mantle source already enriched in LILE and located above the descending oceanic slab. It is suggested that the chemical variations across the volcanic belt reflect systematic changes in the composition of the magmas due to a decreasing degree of partial melting with increasing depth, and probably also due to the heterogeneity of the source materials.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    Springer
    Contributions to mineralogy and petrology 49 (1975), S. 163-175 
    ISSN: 1432-0967
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences
    Notes: Abstract Garnet-cordierite-sillimanite bearing rocks from the contact aureole of the Precambrian Loon Lake pluton in Chandos Township, southeastern Ontario were analyzed for the major and rare-earth elements. In comparison with the associated Apsley biotite gneisses, they are rich in Al, Mg, and Fe, low in Si, Na, and K and their REE distribution patterns show a depletion of light REE with a negative Eu anomaly. These rocks are probably residuum left after partial melting of biotite gneiss. Leucogranite associated with the GCS rocks may represent the extracted anatectic material. It is suggested that some of the garnet cordierite-sillimanite gneisses which frequently occur in high-grade regionally metamorphosed areas of the Grenville Province of the Canadian Shield may also be of a similar residual origin as proposed by Lal and Moorhouse (1969).
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2017-12-13
    Description: The convergence between the Indian plate and the southern margin of the Eurasian continent created an active continental margin from Late Jurassic until about 40 Ma ago, which then evolved to form the Himalaya and the Tibetan Plateau during the continental collision stage. Post-collisional magmatism in southern Tibet, north of the Yarlung Zangbo Suture Zone (YZSZ) has been active since 45 Ma and is related to normal faulting and extensional tectonism. To date no such magmatism was reported within the YZSZ itself. This paper reports on the discovery of Miocene shoshonites within the YZSZ. They are significant because the magma traveled, at least in part, through oceanic crust, thus limiting interaction with the continental crust to the mid-crustal level and which affected the post-collisional magmatic rocks occurring in the northern part of the subduction system. In addition, xenoliths and xenocrysts of crustal origin in these rocks constrain the nature of metamorphic rocks underlying the YZSZ at mid-crustal level. The geochemical signatures of the shoshonitic rocks, including Nd and Sr isotope systematics, indicate derivation from a garnet-bearing middle continental crustal source. Crustal imprint complicates modeling of the petrogenetic processes which occurred prior to mid-crustal ponding of the magma which took place between 11 and 17 Ma at depths of 40 to 50 km. The significant role of crustal contamination raises serious concerns about models proposed for similar magmatic activity elsewhere in the Himalaya and the Tibetan Plateau.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...