GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-1904
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology , Natural Sciences in General
    Notes: Conclusions We are very satisfied with the experimental results thus far obtained. The stability of the flat interface was unexpected and might lead to a better understanding of the influence of side walls on the stability of the system. The movement induced by curvature, the development of the roll cells, were obtained in these experiments under microgravity. A detailed analysis of this development and its influence on mass transfer will lead to new insights in this transfer process.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    Copernicus Publications (EGU)
    In:  Ocean Science, 10 (4). pp. 601-609.
    Publication Date: 2019-09-23
    Description: We provide a time series of Agulhas leakage anomalies over the last 20-years from satellite altimetry. Until now, measuring the interannual variability of Indo-Atlantic exchange has been the major barrier in the investigation of the dynamics and large scale impact of Agulhas leakage. We compute the difference of transport between the Agulhas Current and Agulhas Return Current, which allows us to deduce Agulhas leakage. The main difficulty is to separate the Agulhas Return Current from the southern limb of the subtropical "supergyre" south of Africa. For this purpose, an algorithm that uses absolute dynamic topography data is developed. The algorithm is applied to a state-of-the-art ocean model. The comparison with a Lagrangian method to measure the leakage allows us to validate the new method. An important result is that it is possible to measure Agulhas leakage in this model using the velocity field along a section that crosses both the Agulhas Current and the Agulhas Return Current. In the model a good correlation is found between measuring leakage using the full depth velocities and using only the surface geostrophic velocities. This allows us to extend the method to along-track absolute dynamic topography from satellites. It is shown that the accuracy of the mean dynamic topography does not allow us to determine the mean leakage but that leakage anomalies can be accurately computed.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2013-12-04
    Description: Abrupt climate change is abundant in geological records, but climate models rarely have been able to simulate such events in response to realistic forcing. Here we report on a spontaneous abrupt cooling event, lasting for more than a century, with a temperature anomaly similar to that of the Little Ice...
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2017-02-27
    Description: Past warm periods provide an opportunity to evaluate climate models under extreme forcing scenarios, in particular high ( 〉  800 ppmv) atmospheric CO2 concentrations. Although a post hoc intercomparison of Eocene ( ∼  50  Ma) climate model simulations and geological data has been carried out previously, models of past high-CO2 periods have never been evaluated in a consistent framework. Here, we present an experimental design for climate model simulations of three warm periods within the early Eocene and the latest Paleocene (the EECO, PETM, and pre-PETM). Together with the CMIP6 pre-industrial control and abrupt 4 ×  CO2 simulations, and additional sensitivity studies, these form the first phase of DeepMIP – the Deep-time Model Intercomparison Project, itself a group within the wider Paleoclimate Modelling Intercomparison Project (PMIP). The experimental design specifies and provides guidance on boundary conditions associated with palaeogeography, greenhouse gases, astronomical configuration, solar constant, land surface processes, and aerosols. Initial conditions, simulation length, and output variables are also specified. Finally, we explain how the geological data sets, which will be used to evaluate the simulations, will be developed.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2017-04-04
    Description: Precipitation extremes are expected to increase in a warming climate, thus it is essential to characterise their potential future changes. Here we evalu- ate eight high-resolution Global Climate Model simulations in the twenti- eth century and provide new evidence on projected global precipitation ex- tremes for the 21st century. A significant intensification of daily extremes for all seasons is projected for the mid and high latitudes of both hemispheres at the end of the present century. For the subtropics and tropics, the lack of reliable and consistent estimations found for both the historical and fu- ture simulations might be connected with model deficiencies in the repre- sentation of organised convective systems. Low inter-model variability and good agreement with high-resolution regional observations are found for the twentieth century winter over the Northern Hemisphere mid and high lat- itudes.
    Description: Published
    Description: 4887–4892
    Description: 3.7. Dinamica del clima e dell'oceano
    Description: JCR Journal
    Description: open
    Keywords: extreme events ; precipitation ; cmip5 ; 01. Atmosphere::01.01. Atmosphere::01.01.02. Climate
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    In:  EPIC3EGU General Assembly, Vienna, Austria, 2013-04-07-2013-04-12
    Publication Date: 2019-07-17
    Description: The equilibrium (Charney) climate sensitivity, here indicated by Sa, is the equilibrium change in Earth’s global mean surface temperature due to a radiative forcing associated with a doubling of pCO2, the atmospheric CO2 concentration. Palaeo data have been frequently used to determine Sa, and — if slow feedback processes are adequately taken into account — indicate a similar range as those based on climate model results used in IPCC AR4. In most of these palaeostudies it is implicitly assumed that the (fast) feedback processes are independent of the background climate state, e.g., are equally strong during glacial and interglacial periods. Here we assess the dependency of the fast feedback processes on the background climate state using data of the last 800 kyr and a conceptual climate model. Sa is found to be higher in cold periods than during warm times. By correcting for this state dependency, we determine a new value of the Charney sensitivity Sa = 0.71 ± 0.40 K (W m−2)−1 (corresponding to a warming of 2.6 ± 1.5 K for 2 × pCO2), which is lower than present estimates in which state dependency is neglected.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    Wiley
    In:  EPIC3Geophysical Research Letters, Wiley, 41(18), pp. 6484-6492, ISSN: 0094-8276
    Publication Date: 2019-07-17
    Description: Paleo data have been frequently used to determine the equilibrium (Charney) climate sensitivity Sa, and—if slow feedback processes (e.g., land-ice albedo) are adequately taken into account—they indicate a similar range as estimates based on instrumental data and climate model results. Many studies assume the (fast) feedback processes to be independent of the background climate state, e.g., equally strong during warm and cold periods. Here we assess the dependency of the fast feedback processes on the background climate state using data of the last 800 kyr and a box model of the climate system for interpretation. Applying a new method to account for background state dependency, we find Sa=0.61±0.07 K (W m−2)−1(±1σ) using a reconstruction of Last Glacial Maximum (LGM) cooling of −4.0 K and significantly lower climate sensitivity during glacial climates. Due to uncertainties in reconstructing the LGM temperature anomaly, Sa is estimated in the range Sa = 0.54–0.95 K (W m−2)−1.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-07-17
    Description: Many palaeoclimate studies have quantified pre-anthropogenic climate change to calculate climate sensitivity (equilibrium temperature change in response to radiative forcing change), but a lack of consistent methodologies produces a wide range of estimates and hinders comparability of results. Here we present a stricter approach, to improve intercomparison of palaeoclimate sensitivity estimates in a manner compatible with equilibrium projections for future climate change. Over the past 65 million years, this reveals a climate sensitivity (in K W−1 m2) of 0.3–1.9 or 0.6–1.3 at 95% or 68% probability, respectively. The latter implies a warming of 2.2–4.8 K per doubling of atmospheric CO2, which agrees with IPCC estimates.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...