GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
  • 1
    Publikationsdatum: 2021-05-19
    Beschreibung: Survival of larval Antarctic krill (Euphausia superba) during winter is largely dependent upon the presence of sea ice as it provides an important source of food and shelter. We hypothesized that sea ice provides additional benefits because it hosts fewer competitors and provides reduced predation risk for krill larvae than the water column. To test our hypothesis, zooplankton were sampled in the Weddell-Scotia Confluence Zone at the ice-water interface (0–2 m) and in the water column (0–500 m) during August–October 2013. Grazing by mesozooplankton, expressed as a percentage of the phytoplankton standing stock, was higher in the water column (1.97 ± 1.84%) than at the ice-water interface (0.08 ± 0.09%), due to a high abundance of pelagic copepods. Predation risk by carnivorous macrozooplankton, expressed as a percentage of the mesozooplankton standing stock, was significantly lower at the ice-water interface (0.83 ± 0.57%; main predators amphipods, siphonophores and ctenophores) than in the water column (4.72 ± 5.85%; main predators chaetognaths and medusae). These results emphasize the important role of sea ice as a suitable winter habitat for larval krill with fewer competitors and lower predation risk. These benefits should be taken into account when considering the response of Antarctic krill to projected declines in sea ice. Whether reduced sea-ice algal production may be compensated for by increased water column production remains unclear, but the shelter provided by sea ice would be significantly reduced or disappear, thus increasing the predation risk on krill larvae.
    Repository-Name: EPIC Alfred Wegener Institut
    Materialart: Article , peerRev
    Format: application/pdf
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    facet.materialart.
    Unbekannt
    In:  EPIC3Arctic in Rapid Transition (ART) Workshop, Gdansk, Poland, 2012-10-22-2012-10-26
    Publikationsdatum: 2019-07-17
    Repository-Name: EPIC Alfred Wegener Institut
    Materialart: Conference , notRev
    Format: application/pdf
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    facet.materialart.
    Unbekannt
    In:  EPIC3Arctic in Rapid Transition (ART) Workshop, Gdansk, Poland, 2012-10-22-2012-10-26
    Publikationsdatum: 2019-07-17
    Repository-Name: EPIC Alfred Wegener Institut
    Materialart: Conference , notRev
    Format: application/pdf
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 4
    Publikationsdatum: 2022-05-27
    Beschreibung: © The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Schaafsma, F. L., David, C. L., Kohlbach, D., Ehrlich, J., Castellani, G., Lange, B. A., Vortkamp, M., Meijboom, A., Fortuna-Wunsch, A., Immerz, A., Cantzler, H., Klasmeier, A., Zakharova, N., Schmidt, K., Van de Putte, A. P., van Franeker, J. A., & Flores, H. Allometric relationships of ecologically important Antarctic and Arctic zooplankton and fish species. Polar Biology 45, (2022): 203–224, https://doi.org/10.1007/s00300-021-02984-4.
    Beschreibung: Allometric relationships between body properties of animals are useful for a wide variety of purposes, such as estimation of biomass, growth, population structure, bioenergetic modelling and carbon flux studies. This study summarizes allometric relationships of zooplankton and nekton species that play major roles in polar marine food webs. Measurements were performed on 639 individuals of 15 species sampled during three expeditions in the Southern Ocean (winter and summer) and 2374 individuals of 14 species sampled during three expeditions in the Arctic Ocean (spring and summer). The information provided by this study fills current knowledge gaps on relationships between length and wet/dry mass of understudied animals, such as various gelatinous zooplankton, and of animals from understudied seasons and maturity stages, for example, for the krill Thysanoessa macrura and larval Euphausia superba caught in winter. Comparisons show that there is intra-specific variation in length–mass relationships of several species depending on season, e.g. for the amphipod Themisto libellula. To investigate the potential use of generalized regression models, comparisons between sexes, maturity stages or age classes were performed and are discussed, such as for the several krill species and T. libellula. Regression model comparisons on age classes of the fish E. antarctica were inconclusive about their general use. Other allometric measurements performed on carapaces, eyes, heads, telsons, tails and otoliths provided models that proved to be useful for estimating length or mass in, e.g. diet studies. In some cases, the suitability of these models may depend on species or developmental stages.
    Beschreibung: The Netherlands Ministry of Agriculture, Nature and Food Quality (LNV) funded this research under its Statutory Research Task Nature & Environment WOT-04-009-047.04. This research was further supported by the Netherlands Polar Programme (NPP), managed by the Dutch Research Council (NWO) under project nr. ALW 866.13.009 (ICEFLUX-NL). The study is associated with the Helmholtz Association Young Investigators Group ICEFLUX: Ice-ecosystem carbon flux in polar oceans (VH-NG-800) and contributes to the Helmholtz (HGF) research Programme Changing Earth – Sustaining our Future, Research Field Earth & Environment, Topic 6.1 and 6.3. NZ was supported by the GEOMAR project CATS: The Changing Arctic Transpolar System (BMBF-FK2 CATS). Contributions by KS were funded by the UK’s Natural Environment Research Council MOSAiC-Thematic project SYM-PEL: “Quantifying the contribution of sympagic versus pelagic diatoms to Arctic food webs and biogeochemical fluxes: application of source-specific highly branched isoprenoid biomarkers” (NE/S002502/1). BAL was further supported by the Norwegian Polar Institute and funding to M. Granskog from the Research Council of Norway to projects CAATEX (280531) and HAVOC (280292). DK was further funded by the Research Council of Norway through the project The Nansen Legacy (RCN # 276730) at the Norwegian Polar Institute. GC was further funded by the project EcoLight (03V01465) as part of the joint NERC/BMBF programme Changing Arctic Ocean. AVdP received support from Belspo in the framework the EU Lifewatch ERIC (Grant agreement FR/36/AN3) and the FEDTwin. Expedition Grant Numbers: ARK XVII/3 (PS80), AWI-PS81_01 (WISKY), ANT-XXIX/9 (PS82), AWI-PS89_02 (SIPES), AWI_PS92_00 (TRANSSIZ) and AWI_PS106/1_2-00 (SIPCA).
    Schlagwort(e): Arctic Ocean ; Southern Ocean ; Length ; Mass ; Zooplankton ; Fish ; Regression models
    Repository-Name: Woods Hole Open Access Server
    Materialart: Article
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 5
    Publikationsdatum: 2022-06-08
    Beschreibung: © The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in David, C. L., Ji, R., Bouchard, C., Hop, H., & Hutchings, J. A. The interactive effects of temperature and food consumption on growth of larval Arctic cod (Boreogadus saida): a bioenergetic model. Elementa: Science of the Anthropocene, 10(1), (2022): 00045, https://doi.org/10.1525/elementa.2021.00045.
    Beschreibung: Understanding larval growth, mediated by the interaction of early life traits and environmental conditions, is crucial to elucidate population dynamics. We used a bioenergetic model as an integrative tool to simulate the growth of Arctic cod (Boreogadus saida) larvae and to test the sensitivity of modeled growth to temperature and food quantity and quality. The growth was computed as the energy gained through food consumption minus the energy lost through respiration and other metabolic processes. We extended a previously published bioenergetic model to cover the full range of larval length and used a simplified feeding module. This simplification allowed us to build a predictive tool that can be applied to larval Arctic cod at a large spatial scale. Our model suggested that with subzero temperatures in the High Arctic, larvae need to increase food consumption in order to reach the observed length-at-age in late summer. The modeled growth agreed well with the field observations in the High Arctic but was 2–3 times higher than the laboratory-derived growth rate, probably due to differences in food type and selective mortality. Our study reveals important knowledge gaps in our understanding of larval cod growth in the High Arctic, including the lack of empirical estimations of daily ration and respiration for larvae under the natural habitat temperatures.
    Beschreibung: This research was undertaken thanks in part to funding from the Canada First Research Excellence Fund, through the Ocean Frontier Institute.
    Schlagwort(e): Polar cod ; Bioenergetic model ; Polar fish ; Feeding energetics ; Temperature limitation
    Repository-Name: Woods Hole Open Access Server
    Materialart: Article
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...